VERGLEICH VON CNG UND LNG ZUM EINSATZ IN LKW IM FERNVERKEHR

Eine Expertise für die Open Grid Europe GmbH | Abschlussbericht

Dr. Ulrich Bünger
Hubert Landinger
Werner Weindorf
Reinhold Wurster
Jan Zerhusen
Dr. Werner Zittel

Abschlussbericht
Mai 2016

www.lbst.de
Haftungsausschluss

Der Mitarbeiterstab der Ludwig-Bölkow-Systemtechnik GmbH hat diesen Bericht erstellt.

INHALT

TABELLEN .. V
ABBILDUNGEN .. VII
ABKÜRZUNGEN .. X
ZUSAMMENFASSUNG .. XII

0 HINTERGRUND, ZIELSETZUNG UND ABGRENZUNG DER ARBEIT 17
1 BESCHREIBUNG STATUS QUO .. 20
 1.1 Aktueller Stand beim Einsatz von Erdgas in schweren Nutzfahrzeugen .. 20
 1.2 Aktueller Stand der Fahrzeugtechnik ... 24
 1.2.1 Erdgasmotorentechnologien .. 24
 1.2.2 Tanktechnologien ... 28
 1.2.2.1 CNG ... 28
 1.2.2.2 LNG .. 31
 1.2.2.3 Vergleich CNG / LNG Tanktechnologie .. 33
 1.3 Aktueller Stand der Tankstellentechnik .. 34
 1.3.1 CNG .. 34
 1.3.2 LNG .. 35
 1.4 Stand der Diskussionen zu einer CNG- bzw. LNG-Infrastruktur in Deutschland ... 37
 1.4.1 Interessen der Industrie .. 38
 1.4.2 Interessen der Betreiber / Nutzer ... 38
 1.4.3 Kompetenzen der Genehmigungsinstitutionen ... 39

2 VERGLEICHENDE ENERGIE-, THG- UND KOSTENANALYSE WiT UND WtW 40
 2.1 Methodologie ... 40
 2.1.1 Treibhausgasemissionen .. 40
 2.1.2 Wirkungsgradmethode .. 41
 2.2 Well-to-Tank ... 41
 2.2.1 Diesel aus Rohöl ... 41
2.2.2 CNG aus Erdgas aus Norwegen (1.700 km) ..42
2.2.3 CNG aus Erdgas aus Iran (4.000 km) ..45
2.2.4 CNG aus Erdgas aus Russland (5.000 km) ..46
2.2.5 LNG Import aus Katar / Iran ...47
2.2.6 LNG Import aus Trinidad und Tobago ...52
2.2.7 LNG Import aus USA (Shale Gas) ..52
2.2.8 Ergebnisse Well-to-Tank ...54
2.3 Tank-to-Wheel ...63
2.4 Well-to-Wheel ...65
 2.4.1 Energieeinsatz und Treibhausgasemissionen ..65
 2.4.2 Kosten ..70
3 POTENZIELLE AUSWIRKUNGEN VON AUS DEN USA IMPORTIERTEM SHALE GAS 75
 3.1 Die Förderung von Shale Gas in den USA ..75
 3.1.1 Förderstatistiken von US Shale Gas ..75
 3.1.2 Förderszenarien der künftigen Entwicklung78
 3.2 Methanemissionen von US Shale Gas ...81
 3.2.1 Literatur ...81
 3.2.2 Eigene Analysen ..84
 3.3 Weitere Umweltauswirkungen der Shale Gas Förderung in den USA84
 3.4 Ökonomische Aspekte ...85
 3.4.1 Bohrkosten und Abschätzung der Gesamtkosten85
 3.4.2 Ökonomische Situation der Förderfirmen88
3.5 Potenzielle Auswirkungen auf den deutschen Erdgasmarkt90
 3.5.1 Abschätzung für den Export verfügbarer Mengen und deren Kosten ..90
 3.5.2 Kritische Bemerkungen zum Annual Energy Outlook 201692
4 CNG-TANKMONTAGE HINTER DEM FAHRERHAUS ... 94
 4.1 Grundsätzliche Einordnung ...94
4.2 Beispiele aus der Praxis .. 95
4.3 Zulassungsfähigkeit in Europa ... 97
4.4 Maßnahmen und Aufwände, um Zulassungsfähigkeit in Europa herzustellen .. 101

5 ANALYSE VON TANKSTELLEN MIT HOCHLEISTUNGSKOMPRESSOREN 102
5.1 Übersicht Tankstellen-Systemintegratoren und Hersteller von Hochdruckkompressoren .. 102
 5.1.1 Hersteller von Hochdruckkompressoren 102
 5.1.2 Tankstellen-Systemintegratoren .. 107
5.2 Grobanschätzung einer großen CNG-Tankstelle für schwere Nutzfahrzeuge .. 108
5.3 Grundausstattung für CNG-Tankstellen-Netz an deutschen Autobahnen .. 110

6 MARKTEINFÜHRUNG EINE CNG INFRASTRUKTUR FÜR SCHWERE NUTZFahrZEUGE .. 117
6.1 Globale Marktentwicklung von Erdgasfahrzeugen 117
6.2 Die USA als Fallbeispiel für einen erfolgreichen Einsatz von Erdgas in schweren Nutzfahrzeugen .. 120
6.3 Kriterienbasierte Einschätzung des Entwicklungsstandes von CNG für schwere Nutzfahrzeuge im Fernverkehr 124
6.4 Stärken-Schwächen-Analyse .. 125
6.5 Politische Maßnahmen zur Förderung von CNG in schweren Nutzfahrzeugen im Fernverkehr .. 128
6.6 Akteursanalyse ... 132
6.7 Wettbewerbliches Umfeld für den Einsatz von CNG in schweren Nutzfahrzeugen im Fernverkehr .. 133
 6.7.1 Oberleitungs-Lkw .. 133
 6.7.2 Brennstoffzellen-Lkw .. 134
 6.7.3 Methanol als Ottomotorkraftstoff .. 136
 6.7.4 Diesel aus PtL .. 136
 6.7.5 Batterieangetriebener Lkw .. 136
6.8 Offen gebliebene Fragen / Handlungsempfehlungen 137
6.9 Einführungsstrategie für CNG zum Einsatz in schweren Nutzfahrzeugen im Fernverkehr ...137
6.10 Antworten auf strategische Fragen seitens OGE ...139
7 LITERATUR ... 141
TABellen

Tabelle 1: Mittlere und schwere Nutzfahrzeuge mit Erdgasantrieb / Welt [GVR 2015] ... 20
Tabelle 2: Mittlere und schwere Nutzfahrzeuge mit Erdgasantrieb / Europäische Union [NGVA europe 2014] 21
Tabelle 3: Erdgastankstellen weltweit und in Deutschlands Nachbarländern [NGVA europe 2013], [NGVA europe 2014], [GVR 2016], [NGV Today 2015] ... 24
Tabelle 4: Unterschied im Kraftstoffverbrauch von Fahrzeugen mit CNG/LNG gegenüber Dieselantrieb ... 26
Tabelle 5: CNG-Tankhersteller mit für Lkw-geeigneten Tankgrößen .. 29
Tabelle 6: Lkw-geeignete CNG-Tankgrößen .. 30
Tabelle 7: Lkw-geeignete LNG-Tankgrößen .. 32
Tabelle 8: Speichermassenvergleich CNG Typ IV versus LNG .. 34
Tabelle 9: Interesse an / Kompetenz in CNG- / LNG-Infrastruktur in Deutschland .. 37
Tabelle 10: Treibhausgaspotenzial verschiedener Treibhausgase [IPCC 2007], [IPCC 2013] ... 40
Tabelle 11: Rohölpreis und daraus resultierender Dieselpreis (ohne Steuern) ... 42
Tabelle 12: Erdgasförderung in Norwegen (offshore) .. 42
Tabelle 13: Erdgasaufbereitung in Norwegen (onshore) .. 42
Tabelle 14: Technische und ökonomische Daten CNG-Tankstelle .. 44
Tabelle 15: Erdgasförderung und -aufbereitung nach [JEC 2014] ... 45
Tabelle 16: Erdgasförderung in Russland (onshore) [GEMIS 2014] ... 46
Tabelle 17: Erdgasaufbereitung in Russland (onshore) [GEMIS 2014] ... 47
Tabelle 18: Technische und ökonomische Daten Tanksattelauflieger .. 49
Tabelle 19: Technische und ökonomische Daten Zugmaschine .. 49
Tabelle 20: Technische und ökonomische Daten der LNG-Tankstelle .. 51
Tabelle 21: Treibhausgasemissionen aus Exploration, Förderung und Verarbeitung von Shale Gas ... 53
Tabelle 22: Treibhausgasemissionen aus Bereitstellung und Nutzung von Dieselkraftstoff, CNG und LNG, aufgeteilt in einzelne Prozessschritte (g CO₂-Äquivalent/MJ) ... 60
Tabelle 23: Treibhausgasemissionen aus Bereitstellung und Nutzung von Dieselkraftstoff, CNG und LNG, aufgeteilt in einzelne Prozessschritte (g CO₂-Äquivalent/kWh) .. 60
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Abschlussbericht

Tabelle 24: Treibhausgasemissionen aus Bereitstellung und Nutzung von Dieselkraftstoff, CNG und LNG, aufgeteilt in einzelne Prozessschritte (g CO₂-Äquivalent/Nm³).. 61

Tabelle 25: Kosten für die Bereitstellung von LNG und CNG im Vergleich zu Dieselkraftstoff aus Rohöl (Wegfall der Steuerermäßigung von Erdgas als Kraftstoff nach 31. DEZ 2018) .. 62

Tabelle 26: Kosten für die Bereitstellung von LNG und CNG im Vergleich zu Dieselkraftstoff aus Rohöl (Verlängerung der Steuerermäßigung von Erdgas als Kraftstoff über das Jahr 2018 hinaus) .. 63

Tabelle 27: Kraftstoffverbrauch und Nicht-CO₂-Treibhausgasemissionen der Lkw.. 65

Tabelle 28: CH₄-Emissionen aus Shale Gas Fördergebieten... 83

Tabelle 29: Abschätzung des Break-Even-Gaspreises, über dem die Gasförderung in unterschiedlichen Shales für die Firmen rentabel wird.. 88

Tabelle 30: Genehmigte und im Bau befindliche LNG-Exportterminals in den USA [FERC 2016a].. 91

Tabelle 31: Einbaualternativen für CNG-Speichermodule mit 20 MPa 100

Tabelle 32: Übersicht über ausgewählte Hersteller von CNG-Kompressoren .. 106

Tabelle 33: Identifizierte Systemintegratoren von CNG-Tankstellen........................ 108

Tabelle 34: Verbundmaterialtankhersteller weltweit und ihre geschätzten Marktanteile (Auswahl) (LBST auf Basis [Composites 2014]) .. 120

Tabelle 35: Eckdaten für die Umsetzung der Alternative Fuels Infrastructure Directive (AFID) spezifisch für das Thema Wasserstoff .. 130

Tabelle 36: Offene Punkte / unbeantwortete Fragen, Handlungsempfehlungen .. 137
ABBILDUNGEN

Abbildung 1: Verteilung der Fahrleistung von Lkw >7,5 t in Deutschland 2013 (LBST auf Basis TREMOD) ... 19
Abbildung 2: Verteilung der Verbräuche von Lkw >7,5 t in Deutschland 2013 (LBST auf Basis TREMOD & EMEP / EEA) ... 19
Abbildung 3: Entwicklung LNG-Lkw in China (LBST auf Basis [UN ECE 2015] und [NGV Today 2013]) ... 22
Abbildung 5: LNG-Tank, Tilburg, Niederlande, 18. NOV 2014 (Foto: LBST) ... 33
Abbildung 6: LNG-Tankstelle, Tilburg, Niederlande, 18. NOV 2014 (Foto: LBST) ... 37
Abbildung 7: Entwicklung der Preise für Erdgas und LNG (LBST auf Basis [EIA 2015]) ... 48
Abbildung 8: LNG-Tankstelle, Tilburg, Niederlande, 18. NOV 2014 (Foto: LBST) ... 50
Abbildung 9: Energieverlust „Well-to-Tank“, aufgeteilt in einzelne Prozessschritte ... 55
Abbildung 10: Energieverlust für die Bereitstellung und Nutzung von Dieselkraftstoff, CNG und LNG, aufgeteilt in einzelne Prozessschritte ... 56
Abbildung 11: Energieverlust für die Bereitstellung und Nutzung von Dieselkraftstoff, CNG und LNG, aufgeteilt in fossile, nukleare und erneuerbare Energieträger ... 57
Abbildung 12: Treibhausgasemissionen „Well-to-Tank“, aufgeteilt in einzelne Prozessschritte ... 58
Abbildung 13: Treibhausgasemissionen aus Bereitstellung und Nutzung von Dieselkraftstoff, CNG und LNG, aufgeteilt in einzelne Prozessschritte ... 59
Abbildung 14: Energieeinsatz „Well-to-Wheel“, aufgeteilt in einzelne Prozessschritte ... 66
Abbildung 15: Energieeinsatz „Well-to-Wheel“, aufgeteilt in fossile, nukleare und erneuerbare Primärenergie ... 67
Abbildung 16: Spezifischer Energieeinsatz WtT und WtW in Relation zu Diesel ... 68
Abbildung 17: Treibhausgasemissionen „Well-to-Wheel“, aufgeteilt in einzelne Prozessschritte ... 69
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Abschlussbericht

Abbildung 18: Spezifische Treibhausgasemissionen WtT und WtW in Relation zu Diesel ... 70
Abbildung 20: Kraftstoffkosten „Well-to-Wheel“ (Verlängerung der Steuerermäßigung von Erdgas als Kraftstoff über das Jahr 2018 hinaus) ... 71
Abbildung 22: Kraftstoffkosten (km-spezifisch) in Relation zu Diesel – Rohöl- und Dieselpreis 2016 (Sensitivitätsbetrachtung) 74
Abbildung 23: Monatliche Gasförderung im Fayetteville Shale (Arkansas) [Zittel 2016, S. 198-200] ... 76
Abbildung 25: US-Gasförderung seit 1980; dargestellt ist der Beitrag der wichtigsten Gas Shales und die Summe der sonstigen Gasförderung ... 78
Abbildung 26: Erdgasförderung USA und zwei Szenarien zur künftigen Entwicklung: Starke Ausweitung der Förderung um 50% bis zum Jahr 2040 [AEO 2016] oder Halbierung der Förderung bis 2040 (LBST / [Hughes 2015]) 79
Abbildung 28: Methanemissionen anhand von Flugzeugmessungen und Rückrechnung auf die Quellstärke (LBST auf Basis [NOAA 2016], [Peischl et al. 2015]) 83
Abbildung 30: Entwicklung der durchschnittlichen Bohrkosten in den USA und des Gaspreis (1 USD/1.000 scf / ~3,53 €ct/m³) 86
Abbildung 31: Gewinne und Verluste von 31 weltweit aktiven Ölfirmen in 2015, deren Anteil an der weltweiten Öl- und Gasförderung gemeinsam etwa 30% beträgt 90
Abbildung 34: Abmessungen des Quantum 180 Gen 2 Back Of Cab Fuel Storage Module [Quantum 2015] ... 96
Abbildung 35: Generelle Fahrzeuganforderungen beim Einsatz von Quantum Fuel Storage Modules (FSM) in den USA [Quantum 2015] .. 97
Abbildung 37: Galileo Kompressorprodukte [Galileo 2014] 104
Abbildung 38: Angenommene prozentuale Verteilung der Betankungsmengen (LBST auf Basis [Jung 2016]).......................... 109
Abbildung 40: Mögliche Standorträume bei 15 Betankungsmöglichkeiten.......... 113
Abbildung 41: Mögliche Standorträume bei 30 Betankungsmöglichkeiten........ 115
Abbildung 42: Globale Erdgasfahrzeugentwicklung (LBST auf Basis [Composites 2014]) .. 118
Abbildung 43: Globale Produktionsvorhersage für Druckgasbehälter (CNG und CGH₂) 2006-2023 (LBST auf Basis [Composites 2014]) 119
Abbildung 45: Entwicklungsstand der CNG-Technologie zum Betrieb von Nutzfahrzeugen für den Fernverkehr (diese Studie) 125
Abbildung 46: Zuordnungsmatrix alternativer Kraftstoffe zu Verkehrssektoren (LBST auf Basis [MKS 2011]) 131
Abbildung 47: Aktivitätsniveau relevanter Akteure zum Einsatz von CNG in schweren Nutzfahrzeugen.. 132
Abbildung 49: Brennstoffzellenangetriebener Schwerlast-Lkw [Tosca 2016] ... 135
Abbildung 50: Wichtige Schritte auf dem Weg zu einer erfolgreichen Markteinführung von CNG für den Einsatz in Nutzfahrzeugen für den Fernverkehr .. 138
ABKÜRZUNGEN

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEO</td>
<td>Annual Energy Outlook der US-EIA</td>
</tr>
<tr>
<td>AFID</td>
<td>Alternative Fuels Infrastructure Directive</td>
</tr>
<tr>
<td>BAB</td>
<td>Bundesautobahnen</td>
</tr>
<tr>
<td>BMVI</td>
<td>Bundesministerium für Verkehr und Infrastruktur</td>
</tr>
<tr>
<td>BSR</td>
<td>Berliner Stadtreinigung</td>
</tr>
<tr>
<td>CBM</td>
<td>Coalbed Methane (Kohleflözgas)</td>
</tr>
<tr>
<td>CH₄</td>
<td>Methan</td>
</tr>
<tr>
<td>CNG</td>
<td>Compressed Natural Gas (verdichtetes Erdgas)</td>
</tr>
<tr>
<td>CO₂</td>
<td>Kohlendioxid</td>
</tr>
<tr>
<td>CPT</td>
<td>Clean Power for Transport</td>
</tr>
<tr>
<td>DI</td>
<td>Direct Injection (Direkteinspritzung)</td>
</tr>
<tr>
<td>DVGW</td>
<td>Deutscher Verein des Gas- und Wasserfaches e.V.</td>
</tr>
<tr>
<td>EC</td>
<td>European Commission (Europäische Kommission)</td>
</tr>
<tr>
<td>EEV</td>
<td>Enhanced Environmentally-friendly Vehicle (besonders umweltfreundliches Fahrzeug)</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>EU</td>
<td>Europäische Union</td>
</tr>
<tr>
<td>FSM</td>
<td>Fuel Storage Module (Modul zur Kraftstoffspeicherung)</td>
</tr>
<tr>
<td>GDE</td>
<td>Gallone Diesel Equivalent</td>
</tr>
<tr>
<td>GVR</td>
<td>Gas Vehicle Report</td>
</tr>
<tr>
<td>HD</td>
<td>Heavy Duty (Schwerlast-)</td>
</tr>
<tr>
<td>HPDI</td>
<td>High Pressure Direct Injection (Hochdruck-Direkteinspritzung)</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>l</td>
<td>Liter</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogramm</td>
</tr>
<tr>
<td>km</td>
<td>Kilometer</td>
</tr>
<tr>
<td>LBST</td>
<td>Ludwig-Bölkow-Systemtechnik</td>
</tr>
<tr>
<td>L-CNG</td>
<td>Liquefied-Compressed Natural Gas (Druckerdgas durch Verdampfung und Verdichtung aus Flüssigphase erzeugt)</td>
</tr>
<tr>
<td>Lkw</td>
<td>Lastkraftwagen</td>
</tr>
<tr>
<td>LNG</td>
<td>Liquid Natural Gas (verflüssigtes Erdgas)</td>
</tr>
<tr>
<td>MD</td>
<td>Medium Duty (Mittellast-)</td>
</tr>
<tr>
<td>Mio.</td>
<td>Millionen</td>
</tr>
<tr>
<td>MPa</td>
<td>Megapascal</td>
</tr>
<tr>
<td>MKS</td>
<td>Mobilitäts- und Kraftstoffstrategie der deutschen Bundesregierung</td>
</tr>
<tr>
<td>Mrd.</td>
<td>Milliarden</td>
</tr>
<tr>
<td>NG</td>
<td>Natural Gas (Erdgas)</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>NGVA</td>
<td>Natural Gas Vehicle Association</td>
</tr>
<tr>
<td>NO<sub>x</sub></td>
<td>Stickoxide</td>
</tr>
<tr>
<td>NSR</td>
<td>Nationaler Strategierahmen</td>
</tr>
<tr>
<td>Pkw</td>
<td>Personenkraftwagen</td>
</tr>
<tr>
<td>psig</td>
<td>Pounds-force per square inch gauge</td>
</tr>
<tr>
<td>scf</td>
<td>Square cubic feet</td>
</tr>
<tr>
<td>SCR</td>
<td>Selective Catalytic Reduction (selektive katalytische Reduktion)</td>
</tr>
<tr>
<td>StVZO</td>
<td>Straßenverkehrs-Zulassungs-Ordnung</td>
</tr>
<tr>
<td>t</td>
<td>Tonne</td>
</tr>
<tr>
<td>TCO</td>
<td>Total Cost of Ownership (Vollkostenrechnung)</td>
</tr>
<tr>
<td>Tg/a</td>
<td>Teragramm pro Jahr (10<sup>9</sup> t/a)</td>
</tr>
<tr>
<td>TEN-V</td>
<td>Transeuropäische Netzwerke Verkehr</td>
</tr>
<tr>
<td>THG</td>
<td>Treibhausgas</td>
</tr>
<tr>
<td>TtW</td>
<td>Tank-to-Wheel</td>
</tr>
<tr>
<td>US</td>
<td>Vereinigte Staaten</td>
</tr>
<tr>
<td>US-EIA</td>
<td>US Energy Information Administration (US-amerikanische Energiebehörde)</td>
</tr>
<tr>
<td>USA</td>
<td>Vereinigte Staaten von Amerika</td>
</tr>
<tr>
<td>WtT</td>
<td>Well-to-Tank</td>
</tr>
<tr>
<td>WtW</td>
<td>Well-to-Wheel</td>
</tr>
</tbody>
</table>
ZUSAMMENFASSUNG

Basierend auf bisherigen Erkenntnissen kann die Fragestellung, ob LNG oder CNG für den Einsatz in Lkw im Fernverkehr zu favorisieren ist, nicht eindeutig geklärt werden. Es stellten sich also die Fragen, ob die „Setzung“ von LNG durch die europäische Alternative Fuels Directive (AFID) für Deutschland gerechtfertigt ist und ob der Aufbau einer neuen LNG-Infrastruktur gegenüber einer bestehenden Verteilinfrastruktur für gasförmiges Erdgas zielführend ist. Allerdings sind selbst Experten noch nicht endgültig von der Umsetzbarkeit von CNG zum Einsatz in Lkw im Fernverkehr überzeugt.

Aus vorgenannten Gründen sollten daher für OGE im Rahmen dieser Studie die folgenden strategischen Fragen beantwortet werden:

- Warum soll sich die Gaswirtschaft überhaupt für CNG in schweren Nutzfahrzeugen engagieren?
- Ist CNG besser als Diesel?
- Ist CNG besser als LNG?
- Was braucht es (jetzt), um CNG in den Markt zu bekommen?

Dazu wurden schwerpunktmäßig die Themen Motorentechnik, Tanktechnologie und Tankunterbringung im Fahrzeug, Tankstellentechnik, Aufbau einer Tankstellen-Grundversorgung, Kompetenz und Interesse der Akteure und Roadmap zur Markteinführung behandelt sowie eine Well-to-Wheel-Analyse zu Energieeinsatz, Treibhausgasemissionen und Kosten erstellt. Auch eine mögliche Konkurrenz durch preisgünstige LNG-Importe aus den USA (Shale Gas) wurde untersucht.

Motorentechnik
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Abschlussbericht

Tanktechnologie und Tankunterbringung im Fahrzeug

Zur Speicherung von CNG an Bord schwerer Lkw eignen sich in erster Linie Vollkomposit-Tanks vom Typ IV. Diese Behälter werden von einigen Herstellern angeboten, allerdings müssen dedizierte Tanksysteme für den spezifischen Einsatz im Lkw (Einbau zwischen den Achsen und/oder hinter dem Fahrerhaus) für Europa erst noch entwickelt bzw. adaptiert sowie die Zulassungsfähigkeit hergestellt werden, in den USA sind diese bereits verfügbar.

Nach geltendem Regelwerk können heute CNG-Tanks in Deutschland nur im Fahrgestell integriert werden, aber nicht hinter dem Fahrerhaus (ohne Verzicht auf Nutzvolumen und/oder Schlafkabine). Die Einschätzung der Lkw-Hersteller zur Interpretation bzw. Anpassung des Regelwerks bezüglich einer möglichen Installation von CNG-Behältern hinter dem Fahrerhaus ist nicht eindeutig:

- Daimler sieht eine zusätzliche Einbaulänge auf Basis der Richtlinie 2015/719 von 0,6 - 0,7 m im Rahmen von aerodynamischen Anpassungen als umsetzbar an.
- Andere OEMs wollen sich darum bemühen, dass die Richtlinie im Hinblick auf die Unterbringung von CNG-Tanks hinter dem Fahrerhaus auf alternative Kraftstoffe ausgeweitet wird und dadurch Zugfahrzeuglängenänderungen bis zu ca. 1 m möglich werden.

Bei einer Installation von CNG-Tanks im Fahrgestell (zwischen den Achsen) kann bei einseitiger Montage eine Reichweite von ca. 300 km, bei beidseitiger Montage entsprechend eine Reichweite von ca. 600 km erreicht werden. Mit einem CNG-Tankmodul hinter dem Fahrerhaus bestehend aus drei Einzelbehältern kann eine Reichweite von ca. 700 km erzielt werden.

CNG-Tankstellentechnik

Ein Vergleich verschiedener Aspekte für CNG- und LNG-Tankstellen fördert keine Erkenntnisse zu Tage, die eine Favorisierung der einen oder der anderen Technologie erzwingen würde, wie aus der unten stehenden Abbildung gut zu erkennen ist.

Aufbau einer CNG-Tankstellen Grundversorgung

Eine Flächendeckung zur Versorgung des Fernverkehrs mit schweren Nutzfahrzeugen in Deutschland könnte mit ca. 30 Tankstellen erreicht werden. Bei gleichem Mengengerüst sind LNG-Tankstellen investiv etwas günstiger als CNG-Tankstellen. Diesen stehen jedoch niedrigere Erdgasbereitstellungskosten für CNG gegenüber. Aus öffentlichem Interesse (Verkehrsermeidung, Reduzierung von Gefahrguttransporten) ist die Nutzung des bestehenden Erdgasnetzes LNG-(Straßen-)Transporten vorzuziehen. Eine genaue Analyse der Nähe geeigneter Tankstellenstandorte zum existierenden Erdgas(transport)netz in Deutschland steht noch aus, kann wegen der hohen spezifischen Anschlusskosten an das
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Abschlussbericht

Kompetenz und Interesse der Akteure

LNG als Kraftstoff für Lkw im Fernverkehr gilt für eine Vielzahl der Akteure bereits als gesetzt. Allerdings bestehen bei den verschiedenen Interessensgruppen unterschiedliche Sichtweisen.

Im Prinzip sind Technologien (Infrastruktur) und Motorenentwicklungs- als auch Genehmigungskompetenz in Deutschland vorhanden. Es fehlt aber an der Motivation und Überzeugung der Betreiber, potenzieller Nutzer und der Politik, und damit an der Investitionsbereitschaft, um auch Fahrzeuge und Infrastruktur für den CNG-Einsatz bereitzustellen. Kurz gesagt: Würde die Politik eine klare Treibhausgas-Reduktionsstrategie verfolgen, würden alle Akteure handeln müssen!

Roadmap zur Markteinführung von CNG als Kraftstoff zum Einsatz in Lkw im Fernverkehr

Als wichtigster und einziger Vorbereitungsschritt gilt eine TCO-Analyse auf Basis der mit dieser Studie vorgelegten Wirtschaftlichkeitsdaten im Konsortium mit einem oder mehreren Vertretern aus der Nutzfahrzeugbranche, der CNG-Verbundmaterialtankhersteller (Typ IV-Tanks) und der CNG-Tankstellenhersteller mit ersten Erfahrungen in der Entwicklung von CNG-Tankstellen mit großem Durchsatz und redundanter Auslegung.

Zeitgleich sollte an einem Konsens innerhalb der Erdgasindustrie im Sinne einer abgestimmten CNG-/LNG-Strategie gearbeitet werden, die dann in einer politischen Etablierung der CNG-Infrastruktur für schwere Nutzfahrzeuge in Deutschland mündet und auch im nationalen Strategierahmen an die Europäische Kommission berichtet wird. Wichtigste Ergebnisse dieses Schrittes sind dabei die Formulierung auch mengenmäßiger Ziele sowie die Formulierung einer Kommunikationsstrategie.

Alle weiteren Schritte dienen dann bereits der Vorbereitung konkreter Projekte, begleitet durch entsprechende Informationskampagnen und Gewinnung von Pilotkunden für erste reale Felderprobungen.

Well-to-Wheel Analyse zu Energieeinsatz, Treibhausgasemissionen und Kosten

Energieeinsatz

Aufgrund des niedrigeren Wirkungsgrades von Gasmotoren (Otto-Zyklus) gegenüber Dieselmotoren liegt der Primärenergieeinsatz für Lkw mit Gasmotoren heute höher als beim Lkw mit konventionellem Dieselmotor. Lkw mit HPDI-Motor weisen unter den in dieser Studie getroffenen Annahmen (kein Mehrverbrauch gegenüber dem Lkw mit konventionellem Dieselmotor bei LNG, 2% Mehrverbrauch im Fall von CNG aufgrund des

Treibhausgasemissionen

Kosten

HINTERGRUND, ZIELSETZUNG UND ABGRENZUNG DER ARBEIT

Im Hinblick auf die Notwendigkeit der Ablösung von erdölbasierten Kraftstoffen durch CO₂-reduzierte und langfristig vor allen Dingen erneuerbare Kraftstoffe wird Erdgas eine bedeutende Rolle als Übergangskraftstoff in der Mobilität zugeschrieben. Nachdem sich die Einführung von Erdgas via CNG als Kraftstoff für Pkw nicht nur in Deutschland als schwierig herausgestellt hat und aktuell sich insbesondere durch den direkten Schritt in die erneuerbar versorgte Elektromobilität mit Nullemissionsfähigkeit ein starker Wettbewerb entwickelt hat, stellt sich die Frage, ob sich mit dem als herausfordernd anzusehenden Betrieb von schweren Nutzfahrzeugen ein Wachstumsmarkt für Erdgas entwickeln kann, der auch noch längerfristig trägt. Hier gehen die Experten davon aus, dass (a) biogen basierte flüssige Kraftstoffe auch für den Einsatz im Güterverkehr stark potenziell beschränkt sind und (b) die Elektromobilität die Nutzeranforderungen an Gewicht / Volumen / Leistung / Kosten kurz- oder mittelfristig noch nicht erfüllen kann.

Neben der politischen Zeichensetzung zur Nutzung von LNG zum Betrieb schwerer Nutzfahrzeuge in Europa sind auch relevante technische Entwicklungen der Erdgas-
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Hintergrund, Zielsetzung und Abgrenzung der Arbeit

Motorentechnik bzw. der CNG-Verbundmaterial-Tanktechnologie zu beobachten. So sind einerseits Motorenentwickler damit befasst, die HPDI-Dual-Fuel Motorentechnik für hohe Anteile an Erdgas im Kraftstoffmix für schwere Nutzfahrzeuge zu entwickeln, was Antriebe mit Erdgas als Kraftstoff, unabhängig davon in welchem Aggregatzustand das Gas im Fahrzeug gespeichert wird, auf eine vergleichbare Effizienz mit Dieselantrieben stellen kann, wie auch die sauberen ottomotorischen Antriebe weiter zu verfeinern. Zum anderen werden in den USA bereits mehrfach CNG-Flaschenbündelmontagen hinter Fahrerhäusern eingesetzt, die z.B. bei einer Bautiefe von etwa 1,3 Metern über die Lkw-Breite Reichweiten von bis zu 2.200 km pro Tankfüllung (bei 25 MPa) erlauben.

Da eine wichtige Voraussetzung für die Einführung von CNG in Lkw für den Fernverkehr zum einen die Unterbringung der CNG-Behälter an Bord der Zugmaschine und deren Straßenzulassung in Deutschland bzw. Europa ist und eine andere die Umsetzbarkeit der Schnellbetankung und die Verfügbarkeit der erforderlichen Tankstellentechnologie in Deutschland und Europa, liegt neben einem kurzen Überblick über den Status Quo des CNG-Marktes für diesen Anwendungssektor der Schwerpunkt dieser Arbeit auf der Erfüllbarkeit der beiden oben skizzierten Herausforderungen. Ein zweiter Schwerpunkt ist die Analyse der Wahrscheinlichkeit und die Entwicklung von Ansätzen zur Markteinführung von CNG für Lkw im Fernverkehr, die die Erdgasindustrie bei ihrer Suche nach neuen Ansätzen für die Infrastrukturontwicklung auch unter Berücksichtigung der Optionen eines wettbewerblichen LNG-Infrastrukturaufbaus frühzeitig unterstützt.

Basierend auf den oben genannten Arbeiten im Rahmen der Mobilitäts- und Kraftstoffstrategie (MKS) und bezugnehmend auf eine Umsetzbarkeit der Alternative Fuels Infrastructure Directive (AFID) wurde für diese Arbeit ebenfalls ein Top-Down Ansatz gewählt, der vordergründig die Herstellung einer „Fahrfähigkeit“ in der Fläche in den Mittelpunkt stellt und vom Einsatz von Lkw im Fernverkehr ausgeht. Ein Bottom-Up Ansatz, der eine Versorgung einzelner Teilstrecken oder die Verknüpfung verschiedener Logistikzentren verfolgen würde, um dann in die Fläche „hineinzuwachsen“, würde vermutlich das Thema Verteilverkehr (z.B. für die Lebensmittellogistik) mit wesentlich geringeren erforderlichen Fahrzeugreichtweiten, aber dadurch einer wesentlich höheren erforderlichen Tankstellendichte zur Flächenabdeckung in den Vordergrund stellen. Hauptgrund für die Fokussierung auf Lkw im Fernverkehr in dieser Arbeit ist jedoch die Tatsache, dass Lkw zwischen 34 und 40 t den Großteil der Fahrlleistung (72%) aller Lkw größer 7,5 t erbringen und dafür auch einen Großteil des Kraftstoffs (77%) in diesem Segment benötigen (siehe Abbildung 1 und Abbildung 2).
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Hintergrund, Zielsetzung und Abgrenzung der Arbeit

Abbildung 1: Verteilung der Fahrleistung von Lkw >7,5 t in Deutschland 2013 (LBST auf Basis TREMOD)

Abbildung 2: Verteilung der Verbräuche von Lkw >7,5 t in Deutschland 2013 (LBST auf Basis TREMOD & EMEP / EEA)

Die für diese Lkw benötigte Tankstelleninfrastruktur kann auf Autohöfe, Autobahnraststätten und eventuell Logistikzentren beschränkt sein und erfordert daher insgesamt niedrigere Investitionen als eine Infrastruktur für den Verteilverkehr. Ein weiterer Grund ist, dass die AFID für LNG auf die Langstrecken-Betankungsinfrastruktur entlang der TEN-V-Korridore abhebt. Wenn CNG einen äquivalenten Ersatz darstellen will, muss es sich dieser Herausforderung stellen.
1 BESCHREIBUNG STATUS QUO

Dieses Kapitel liefert eine systematische Darstellung des Entwicklungsstandes der CNG- und LNG-Technologie im Hinblick auf deren Weiterentwicklung zum Aufbau einer Betankungsinfrastruktur für schwere Nutzfahrzeuge.

1.1 Aktueller Stand beim Einsatz von Erdgas in schweren Nutzfahrzeugen

Beim Einsatz von Erdgas in schweren Nutzfahrzeugen gibt es derzeit regional sehr starke Unterschiede, die sowohl mit der Verfügbarkeit der Infrastruktur als auch mit der Verfügbarkeit der Fahrzeuge selbst zu tun hat. Leider wird in den Statistiken nicht zwischen MD-Trucks und HD-Trucks, also mittleren und schweren Nutzfahrzeugen, unterschieden.\(^1\) Insgesamt sind laut [GVR 2015] weltweit etwa 794.000 mittlere und schwere Nutzfahrzeuge mit Erdgasantrieb im Einsatz. In neun Ländern, die alle außerhalb der Europäischen Union liegen, sind jeweils mehr als 10.000 dieser Fahrzeuge im Einsatz (siehe Tabelle 1).

Tabelle 1: Mittlere und schwere Nutzfahrzeuge mit Erdgasantrieb / Welt [GVR 2015]

<table>
<thead>
<tr>
<th>Land</th>
<th>Anzahl mittlerer und schwerer Nutzfahrzeuge mit Erdgasantrieb</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>331.531</td>
</tr>
<tr>
<td>Indien</td>
<td>200.000</td>
</tr>
<tr>
<td>Ukraine</td>
<td>59.748</td>
</tr>
<tr>
<td>Thailand</td>
<td>54.268</td>
</tr>
<tr>
<td>Armenien</td>
<td>34.700</td>
</tr>
<tr>
<td>Bangladesch</td>
<td>27.000</td>
</tr>
<tr>
<td>USA</td>
<td>22.700</td>
</tr>
<tr>
<td>Japan</td>
<td>22.516</td>
</tr>
<tr>
<td>Russland</td>
<td>15.000</td>
</tr>
<tr>
<td>Andere</td>
<td>26.152</td>
</tr>
<tr>
<td>Gesamt</td>
<td>793.615</td>
</tr>
</tbody>
</table>

Innerhalb der Europäischen Union ist der Einsatz von Erdgas in mittleren und schweren Nutzfahrzeugen noch nicht sehr weit verbreitet. Beim Blick in die Statistiken ergibt sich, dass wie in Tabelle 2 dargestellt, nur in den folgenden acht Ländern mehr als 100 mittlere und schwere Nutzfahrzeuge im Einsatz sind.

\(^1\) GVR und NGVA führen in ihren Statistiken Medium Duty (MD) und Heavy Duty (HD) Fahrzeuge nicht separiert, sondern nur gebündelt auf. Die Klasse MD beginnt bei 14.000 Pfund (engl. Einheit lb.) entsprechend etwa 6,3 t.
Tabelle 2: Mittlere und schwere Nutzfahrzeuge mit Erdgasantrieb / Europäische Union [NGVA europe 2014]

<table>
<thead>
<tr>
<th>Land</th>
<th>Anzahl mittlerer und schwerer Nutzfahrzeuge mit Erdgasantrieb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italien</td>
<td>3.000</td>
</tr>
<tr>
<td>Schweden</td>
<td>2.163</td>
</tr>
<tr>
<td>Spanien</td>
<td>1.322</td>
</tr>
<tr>
<td>Frankreich</td>
<td>1.100</td>
</tr>
<tr>
<td>Großbritannien</td>
<td>621</td>
</tr>
<tr>
<td>Niederlande</td>
<td>386</td>
</tr>
<tr>
<td>Deutschland</td>
<td>176</td>
</tr>
<tr>
<td>Griechenland</td>
<td>102</td>
</tr>
<tr>
<td>Andere</td>
<td>479</td>
</tr>
<tr>
<td>Gesamt</td>
<td>9.349</td>
</tr>
</tbody>
</table>

Kostenfreie Statistiken darüber, wie sich die mittleren und schweren Nutzfahrzeuge in Fahrzeuge mit CNG- bzw. LNG-Kraftstoffspeicherung aufteilen, sind derzeit nicht verfügbar. Für eine grobe Einordnung sind aber folgende Hinweise zu LNG-Lkw in China, USA und Europa durchaus hilfreich [UN ECE 2015]:

China: In China kann derzeit ein sehr starkes Wachstum an LNG-Lkw beobachtet werden, wie aus Abbildung 3 zu sehen ist.
Abbildung 3: Entwicklung LNG-Lkw in China (LBST auf Basis [UN ECE 2015] und [NGV Today 2013])

* geschätzter Wert aus [NGV Today 2013]

Folgende Prognosen zur Entwicklung des Nutzfahrzeugmarktes (Lkw und Busse) konnten identifiziert werden:

[Shell 2015a] geht davon aus, dass sich der chinesische Bestand an mittelschweren und schweren Nutzfahrzeugen bis 2020 von heute etwa 330.000 auf dann rund 1 Mio. verdreifachen wird.

Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr

Beschreibung Status Quo

Tabelle 3: Erdgastankstellen weltweit und in Deutschlands Nachbarländern [NGVA europe 2013], [NGVA europe 2014], [GVR 2016], [NGV Today 2015]

<table>
<thead>
<tr>
<th>Land</th>
<th>Erdgas-Tankstellen gesamt (2013/14)</th>
<th>davon CNG-Tankstellen</th>
<th>davon LNG-Tankstellen</th>
<th>davon L-CNG-Tankstellen</th>
<th>Erdgastankstellen gesamt (2016)</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>5.080</td>
<td>3.350</td>
<td>1.330 (2.500)</td>
<td>400</td>
<td>6.502</td>
</tr>
<tr>
<td>Pakistan</td>
<td>2.997</td>
<td>2.997</td>
<td></td>
<td></td>
<td>2.997</td>
</tr>
<tr>
<td>Iran</td>
<td>1.992</td>
<td>1.992</td>
<td></td>
<td></td>
<td>2.220</td>
</tr>
<tr>
<td>Argentinien</td>
<td>1.916</td>
<td>1.916</td>
<td></td>
<td></td>
<td>1.939</td>
</tr>
<tr>
<td>Brasilien</td>
<td>1.793</td>
<td>1.793</td>
<td></td>
<td></td>
<td>1.805</td>
</tr>
<tr>
<td>USA</td>
<td>1.647</td>
<td>1.538</td>
<td>109</td>
<td></td>
<td>1.615</td>
</tr>
<tr>
<td>Italien</td>
<td>1.049</td>
<td>1.040</td>
<td>1</td>
<td>8</td>
<td>1.060</td>
</tr>
<tr>
<td>Deutschland</td>
<td>920</td>
<td>920</td>
<td></td>
<td></td>
<td>921</td>
</tr>
<tr>
<td>Indien</td>
<td>724</td>
<td>724</td>
<td></td>
<td></td>
<td>936</td>
</tr>
<tr>
<td>Frankreich</td>
<td>310</td>
<td>310</td>
<td></td>
<td></td>
<td>311</td>
</tr>
<tr>
<td>Schweden</td>
<td>213</td>
<td>205</td>
<td>4</td>
<td>4</td>
<td>213</td>
</tr>
<tr>
<td>Österreich</td>
<td>180</td>
<td>180</td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>Niederlande</td>
<td>147</td>
<td>141</td>
<td>6</td>
<td>≥ 1 (auch LNG)</td>
<td>147</td>
</tr>
<tr>
<td>Schweiz</td>
<td>141</td>
<td>139</td>
<td>1</td>
<td>1</td>
<td>167</td>
</tr>
<tr>
<td>Polen</td>
<td>88</td>
<td>86</td>
<td>1</td>
<td>1</td>
<td>88</td>
</tr>
<tr>
<td>Tschechien</td>
<td>88</td>
<td>88</td>
<td></td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>Spanien</td>
<td>86</td>
<td>69</td>
<td>17 (auch L-CNG)</td>
<td>17 (auch LNG)</td>
<td>86</td>
</tr>
<tr>
<td>Belgien</td>
<td>16</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Dänemark</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

1.2 Aktueller Stand der Fahrzeugtechnik

1.2.1 Erdgasmotorentechnologien

3 HAM hat für Fluxys in 2014 eine LNG-Tankstelle in Belgien errichtet.

Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Beschreibung Status Quo

Tabelle 4: Unterschied im Kraftstoffverbrauch von Fahrzeugen mit CNG/LNG gegenüber Dieselantrieb

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Art der Daten, Einsatzprofil</th>
<th>Fahrzeugtyp, Motor</th>
<th>Verfügbarmkeit Fahrzeug in Deutschland</th>
<th>Diff. Verbrauch (%) Gas / Diesel</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ifeu & TU Graz 2015]</td>
<td>Simulation mit VECTO-Modell, Fern-/Verteilverkehr</td>
<td>LNG-Sattelzug 40 t, Ottomotor Euro VI CNG-Verteiler-Lkw 12 t, Ottomotor Euro VI</td>
<td>heute</td>
<td>+ 18-20%</td>
</tr>
<tr>
<td>[Hendrickx 2015] & interne Informationen</td>
<td>Betreiberangaben, regionaler Verteilverkehr</td>
<td>LNG-Sattelzug, Ottomotor EEV LNG-Sattelzug, Ottomotor Euro VI</td>
<td>bis 2013</td>
<td>+ 24%*</td>
</tr>
<tr>
<td>[Schwanke 2015]</td>
<td>Betreiberangaben, Entsorgungsfahrzeug Stadtverkehr</td>
<td>LNG-Sattelzug, Ottomotor, Mittelwert Fuhrpark</td>
<td>heute</td>
<td>+ 10-21%***</td>
</tr>
</tbody>
</table>

* umgerechnet mit folgenden Heizwerten: Diesel 43,2 MJ/kg, LNG: 49,2 MJ/kg [JEC 2014]; CNG: 49,3 MJ/kg (Angabe BSR); ** bedingt durch Bandbreite LNG-Verbrauch bei IVECO Stralis

benötigen. Einzig der stöchiometrisch betriebene Ottomotor kann darauf verzichten und wird mit einem 3-Wege-Katalysator betrieben.

Die heutigen Nachteile des Ottomotors (geringe Leistungsdichte, geringes Drehmoment, schlechte Effizienz im Teillastbetrieb) lassen sich künftig durch motoren- und regelungstechnische Maßnahmen deutlich verringern. Durch Abgasrückführung, Direkteinspritzung und variable Steuerzeiten sollen sich die Wirkungsgrade und die Leistungsdichte bis auf 90-95% des Diesels steigern lassen (siehe Abbildung 4).

Abbildung 4: Erdgasmotorentechnologien und ihre Entwicklungspotenziale [Gruber 2015]

Sofern sich die durch die Direkteinspritzung eventuell entstehenden Feinpartikelemissionen in Grenzen halten lassen, würde mit dieser Motorentechnologie ein kosten- günstiger, sauberer und effizienter Antrieb zur Verfügung stehen.

Auf dem MKS CNG-LNG-Lkw-Abschlussworkshop in Berlin am 15. NOV 2015 hat Scania mitgeteilt, dass ihre Diesel- und Erdgas-Ottomotoren im Bestpunkt Wirkungsgrade von 43% respektive 41% erreicht haben. Geht man davon aus, dass ein Dieselmotor im 40 t Lkw auf der Autobahn einen Zykluswirkungsgrad von etwa 39% erreicht (also etwa 4%-Punkte weniger als im Bestpunkt), dann kann man vermutlich für einen ottomotorischen
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr

Beschreibung Status Quo

Lkw in diesem Fahrprofil etwa 37% annehmen. Der Unterschied zwischen Diesel- und Ottomotor würde sich bei heutigen Motoren im Teillastbetrieb wahrnehmbar vergrößern (Drosselklappenverluste), würde sich aber wie oben vermerkt durch die Implementierung variabler Steuerzeiten wiederum vermindern lassen.

1.2.2 Tanktechnologien

1.2.2.1 CNG

Mehrere Tankhersteller stellen Tanks geeigneter Geometrien her, die für die Integration in Lkw-Fahrgestelle geeignet erscheinen. Nicht bei allen z.B. in Nordamerika beheimateten Herstellern (z.B. 3M CNG, Hexagon Lincoln, Quantum, Sun CNG, Wire Tough, Worthington) kann davon ausgegangen werden, dass die Tanks auch eine europäische Zulassung haben. Mehrere Hersteller bieten die Tanks in erster Linie in einer 3,600 psig (~25 MPa) Ausführung an, die meist in Europa nicht zulassungsfähig ist.

Bei den meisten Herstellern ist erkennbar, dass der Trend zu leichteren Tanks geht (Typ III und Typ IV).

Eine Übersicht über recherchierte Tankhersteller bietet Tabelle 5. Ausgewählte Tanks, die für die Integration in ein Sattelzugmaschinen-Fahrgestell geeignet erscheinen zeigt Tabelle 6.

Eine Feldrecherche auf einem Rastplatz bei München scheint zu erhärten, dass von einem Einbauraum zwischen der Vorder- und Hinterachse einer Sattelzugmaschine von mindes-
tens 2,2 m ausgegangen werden kann.

Ein Abgleich mit typischen Radständen einer IVECO Stralis 4 x 2 Zugmaschine vom Typ 440S42 / 45T/FP-CT von 3.790 mm bzw. mit MAN-Zugmaschinen der 06X- und 10X-Serie mit typischerweise 3.900 mm und der Anwendung eines Sattelvormaßes von 700 mm auf beide Achsen (1.400 mm) ergibt deduktiv ein Einbaumaß von zwischen 2.390 mm bis 2.500 mm. Dies bedeutet, dass man von einer Einbautiefe von zwischen knapp 2,4 m bis 2,5 m ausgehen könnte, was Tanks von 2,2 m bis 2,3 m Außendurchmesser + Armaturen erlauben würde.

Mit zwei großen Typ IV CNG-Tanks von 2,3 m Außendurchmesser lassen sich mit einem optimierten Ottomotor-Antrieb 710 km Reichweite realisieren, anstatt nur 600 km bis 630 km mit Tanks von nur 2 m Außendurchmesser, also fast 20% mehr.

Die in dieser Analyse unterlegten Tanks sind folgende:

2 m-Version für 2,2 m Einbauraum bei 20 MPa:
Hexagon Typ IV mit 2.032 mm Außenlänge und 658 bzw. 685 mm Außendurchmesser (Volumen

2,3 m-Version für 2,5 m Einbauraum bei 20 MPa:
Quantum Typ IV mit 2.298 mm Außenlänge und 648 mm Außendurchmesser
Tabelle 5: CNG-Tankhersteller mit für Lkw-geeigneten Tankgrößen

<table>
<thead>
<tr>
<th>Tankhersteller</th>
<th>Land</th>
<th>Firmensitz</th>
<th>Webseite</th>
<th>Tanktypen</th>
<th>Sondertyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>3M CNG Tanks</td>
<td>USA</td>
<td></td>
<td>http://www.3M.com/cng</td>
<td>I</td>
<td>x</td>
</tr>
<tr>
<td>Calibras</td>
<td>Brasilien</td>
<td></td>
<td>http://www.calibrascylinders.com</td>
<td>II</td>
<td>x</td>
</tr>
<tr>
<td>CMV Srl</td>
<td>Italien</td>
<td></td>
<td>http://www.cmv-srl.net</td>
<td>III</td>
<td>x</td>
</tr>
<tr>
<td>Cobham Mission Systems</td>
<td>UK</td>
<td></td>
<td>http://www.cobham.com</td>
<td>IV</td>
<td>x</td>
</tr>
<tr>
<td>EKN</td>
<td>Korea</td>
<td></td>
<td>http://www.enkcf.com</td>
<td>I</td>
<td>x</td>
</tr>
<tr>
<td>Faber</td>
<td>Italien</td>
<td></td>
<td>http://www.faber-italy.com</td>
<td>III</td>
<td>x</td>
</tr>
<tr>
<td>Hexagon Lincoln Inc.</td>
<td>USA / Norwegen</td>
<td></td>
<td>http://www.hexagonfoss.com</td>
<td>IV</td>
<td>x</td>
</tr>
<tr>
<td>Iljin Composites</td>
<td>Korea</td>
<td></td>
<td>http://www.composite.co.kr</td>
<td>I</td>
<td>x</td>
</tr>
<tr>
<td>Luxfer</td>
<td>USA / UK</td>
<td></td>
<td>http://www.luxfercylinders.com</td>
<td>III</td>
<td>x</td>
</tr>
<tr>
<td>Metal Mate</td>
<td>Thailand</td>
<td></td>
<td>http://www.metalmate.com</td>
<td>I</td>
<td>x</td>
</tr>
<tr>
<td>Natural Gas Cylinder</td>
<td>Thailand</td>
<td></td>
<td>http://www.nlgas.com</td>
<td>I</td>
<td>x</td>
</tr>
<tr>
<td>Quantum</td>
<td>USA</td>
<td></td>
<td>http://www.quantumcng.com</td>
<td>II</td>
<td>x</td>
</tr>
<tr>
<td>Rama Cylinders</td>
<td>Indien</td>
<td></td>
<td>http://www.ramacylinders.in/cng.html</td>
<td>II</td>
<td>x</td>
</tr>
<tr>
<td>SUN CNG</td>
<td>USA</td>
<td></td>
<td>http://www.suncng.com</td>
<td>I</td>
<td>x</td>
</tr>
<tr>
<td>Vitkovice</td>
<td>Tschechien</td>
<td></td>
<td>http://www.vitkovice.cz</td>
<td>III</td>
<td>x</td>
</tr>
<tr>
<td>Wire Tough</td>
<td>USA</td>
<td></td>
<td>http://www.wiretough.com</td>
<td>I</td>
<td>x</td>
</tr>
<tr>
<td>Worthington</td>
<td>USA</td>
<td></td>
<td>www.worthingtoncylinders.com</td>
<td>II</td>
<td>x</td>
</tr>
<tr>
<td>Xperion/Avanco</td>
<td>Deutschland</td>
<td></td>
<td>http://www.avanco.de</td>
<td>I</td>
<td>x</td>
</tr>
<tr>
<td>Zigong Tonda Machinery</td>
<td>China</td>
<td></td>
<td>http://www.cng-equipments.com</td>
<td>I</td>
<td>x</td>
</tr>
<tr>
<td>Tankhersteller</td>
<td>Länge (m)</td>
<td>Durchmesser (mm)</td>
<td>Masse (kg)</td>
<td>Energieinhalt (DGE lDE)</td>
<td>Reichweite (km)</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>------------</td>
<td>-------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>3M CNG Tanks</td>
<td>1,524</td>
<td>546</td>
<td>59</td>
<td>21,0</td>
<td>79,38</td>
</tr>
<tr>
<td>Calibras</td>
<td>1,995</td>
<td>340</td>
<td>168</td>
<td>37,69</td>
<td>109</td>
</tr>
<tr>
<td>CMV Srl</td>
<td>1,830</td>
<td>350</td>
<td>122</td>
<td>37,95</td>
<td>110</td>
</tr>
<tr>
<td>Cobham Mission Systems</td>
<td>1,524</td>
<td>521</td>
<td>70</td>
<td>18,2</td>
<td>68,80</td>
</tr>
<tr>
<td>EKC - Everest Kanto Cylinders</td>
<td>2,031</td>
<td>533</td>
<td>103</td>
<td>26,1</td>
<td>98,66</td>
</tr>
<tr>
<td>EKN</td>
<td>1,700</td>
<td>338</td>
<td>78</td>
<td>30,36</td>
<td>88</td>
</tr>
<tr>
<td>Faber</td>
<td>1,66</td>
<td>387</td>
<td>?</td>
<td>49,33</td>
<td>143</td>
</tr>
<tr>
<td>Hexagon Lincoln Inc.</td>
<td>2,032</td>
<td>658</td>
<td>165</td>
<td>36,8</td>
<td>139,10</td>
</tr>
<tr>
<td>Iljin Composites</td>
<td>1,820</td>
<td>392</td>
<td>60</td>
<td>41,44</td>
<td>120</td>
</tr>
<tr>
<td>Luxfer</td>
<td>1,909</td>
<td>400</td>
<td>60</td>
<td>45,26</td>
<td>131</td>
</tr>
<tr>
<td>LDXI New Energy Equip.</td>
<td>1,185</td>
<td>406</td>
<td>93</td>
<td>30,36</td>
<td>88</td>
</tr>
<tr>
<td>Metal Mate</td>
<td>1,960</td>
<td>387</td>
<td>61</td>
<td>12,1</td>
<td>45,74</td>
</tr>
<tr>
<td>Natural Gas Cylinder</td>
<td>1,640</td>
<td>325</td>
<td>102</td>
<td>27,83</td>
<td>81</td>
</tr>
<tr>
<td>Quantum</td>
<td>2,044</td>
<td>546</td>
<td>79</td>
<td>87,01</td>
<td>253</td>
</tr>
<tr>
<td>Rama Cylinders</td>
<td>1,845</td>
<td>406</td>
<td>185</td>
<td>49,85</td>
<td>145</td>
</tr>
<tr>
<td>SUN CNG</td>
<td>1,939</td>
<td>404</td>
<td>64</td>
<td>15,1</td>
<td>56,89</td>
</tr>
<tr>
<td>Vitkovice</td>
<td>1,840</td>
<td>360</td>
<td>168</td>
<td>37,95</td>
<td>110</td>
</tr>
<tr>
<td>Wire Tough</td>
<td>1,918</td>
<td>465</td>
<td>223</td>
<td>20,0</td>
<td>75,60</td>
</tr>
<tr>
<td>Worthington</td>
<td>2,032</td>
<td>532</td>
<td>164</td>
<td>23,8</td>
<td>89,96</td>
</tr>
<tr>
<td>Xperion/Avanco</td>
<td>2,014</td>
<td>496</td>
<td>98</td>
<td>75,26</td>
<td>219</td>
</tr>
<tr>
<td>Zigong Tonda Machinery</td>
<td>2,010</td>
<td>414</td>
<td>156</td>
<td>53,63</td>
<td>156</td>
</tr>
<tr>
<td>Luxfer</td>
<td>2,218</td>
<td>400</td>
<td>78</td>
<td>48,95</td>
<td>142</td>
</tr>
<tr>
<td>Hexagon Lincoln Inc.</td>
<td>2,540</td>
<td>536</td>
<td>148</td>
<td>126,80</td>
<td>368</td>
</tr>
<tr>
<td>Hexagon Lincoln Inc.</td>
<td>2,540</td>
<td>536</td>
<td>148</td>
<td>100,38</td>
<td>291</td>
</tr>
<tr>
<td>Hexagon Lincoln Inc.</td>
<td>2,540</td>
<td>658</td>
<td>205</td>
<td>181,30</td>
<td>526</td>
</tr>
<tr>
<td>Hexagon Lincoln Inc.</td>
<td>2,540</td>
<td>658</td>
<td>205</td>
<td>143,53</td>
<td>417</td>
</tr>
<tr>
<td>Hexagon Lincoln Inc.</td>
<td>2,032</td>
<td>658</td>
<td>165</td>
<td>36,8</td>
<td>110,12</td>
</tr>
<tr>
<td>Hexagon Lincoln Inc.</td>
<td>2,032</td>
<td>685</td>
<td>174</td>
<td>38,8</td>
<td>116,24</td>
</tr>
</tbody>
</table>

Reichweitenermittlung: HPDI (LDE / 0,31), Otto 2015 (LDE / (0,31 x 1,24)), Otto 2020+ (LDE / (0,31 x 1,07)); Tankentleerung auf 10%
1.2.2.2 LNG

Allgemein ist festzuhalten, dass LNG-Tanks für Lkw von einer begrenzten Anzahl von Anbietern verfügbar und für Europa zugelassen sind.
<table>
<thead>
<tr>
<th>Tankhersteller</th>
<th>Land Firmensitz</th>
<th>Webseite</th>
<th>Typ / Produktname</th>
<th>Länge (m)</th>
<th>Durchmesser (mm)</th>
<th>Tankmasse (kg)</th>
<th>Energieinhalt LNG in Tank (m³)</th>
<th>Reichweite km (HPDI)</th>
<th>Reichweite km (Otto 2013)</th>
<th>Reichweite km (Otto 2020*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Westport</td>
<td>Kanada</td>
<td>http://www.westport.com</td>
<td>ICE PACK 120</td>
<td>2,150</td>
<td>660</td>
<td>409</td>
<td>225,00</td>
<td>726</td>
<td>516</td>
<td>678</td>
</tr>
<tr>
<td>Taylor Wharton</td>
<td>USA</td>
<td>http://www.taylorwharton.com</td>
<td>LNG-139V</td>
<td>1,930</td>
<td>660</td>
<td>240</td>
<td>428</td>
<td>249,57</td>
<td>805</td>
<td>649</td>
</tr>
<tr>
<td>Taylor Wharton</td>
<td>USA</td>
<td>http://www.taylorwharton.com</td>
<td>LNG-150V</td>
<td>2,360</td>
<td>660</td>
<td>324</td>
<td>540</td>
<td>315,02</td>
<td>1,016</td>
<td>820</td>
</tr>
</tbody>
</table>
1.2.2.3 Vergleich CNG / LNG Tanktechnologie

Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr

Beschreibung Status Quo

Tabelle 8: Speichermassenvergleich CNG Typ IV versus LNG

<table>
<thead>
<tr>
<th>Tankkonzept</th>
<th>LNG Speichertanks</th>
<th>CNG-Speichertanks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hersteller</td>
<td>Taylor Wharton</td>
<td>CryoDiffusion</td>
</tr>
<tr>
<td>Model</td>
<td>LNG 119V</td>
<td>Typ 352 L</td>
</tr>
<tr>
<td>Länge (m)</td>
<td>1,95</td>
<td>1,72</td>
</tr>
<tr>
<td>Durchmesser (m)</td>
<td>0,65</td>
<td>0,67</td>
</tr>
<tr>
<td>Gasdruck (bar)</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Leergeräusch Tank (kg)</td>
<td>254</td>
<td>260</td>
</tr>
<tr>
<td>Erdgasmasse (kg)</td>
<td>145</td>
<td>171</td>
</tr>
<tr>
<td>Tank- und Gas-Masse (kg)</td>
<td>399</td>
<td>431</td>
</tr>
<tr>
<td>Bruttovolumen (l)</td>
<td>450</td>
<td>430</td>
</tr>
<tr>
<td>Anzahl erforderlicher CNG-Tanks:</td>
<td>2,5</td>
<td>2,4</td>
</tr>
<tr>
<td>Äquivalenzmasse CNG-Tank:</td>
<td>207,1 kg</td>
<td>210,2 kg</td>
</tr>
<tr>
<td>Äquivalenzmasse CNGas:</td>
<td>171,0 kg</td>
<td>173,0 kg</td>
</tr>
<tr>
<td>Äquivalenz-Speichersystemmasse:</td>
<td>378,1 kg</td>
<td>382,2 kg</td>
</tr>
<tr>
<td>Äquivalenzenvolumen:</td>
<td>1091,1 l</td>
<td>1115,4 l</td>
</tr>
</tbody>
</table>

Verwendete Quellen: [Quantum 2014a], [Quantum 2014b], [Cryo Diffusion 2013], [Taylor-Wharton 2004]

Die durchgeführte Analyse zeigt einerseits, dass LNG-Tanks und Typ IV CNG-Tanks für vergleichbare Reichweiten oder Energieinhalte vergleichbare Massen haben. Andererseits zeigen die Analysen auch, dass auf volumetrischer Vergleichsbasis LNG in etwa die doppelte Reichweite in einem vergleichbaren volumetrischen Einbauraum ermöglicht.

Mit optimierter CNG-Tanktechnologie beidseitig integriert in typischen Lkw-Zugmaschinen-Fahrgestellen lassen sich etwa 700 km Reichweite erzielen, wohingegen sich mit LNG-Speichern vergleichbarer Außenabmessungen etwa die doppelte Reichweite erzielen lässt.

1.3 Aktueller Stand der Tankstellentechnik

1.3.1 CNG

Augsburg

In Augsburg existiert eine Kompressorkapazität von rund 6.000 Nm³/h, die von 6 Kompressoren bereitgestellt und über 4 Dispenser abgegeben werden [Braun 2016].
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Beschreibung Status Quo

Damit werden täglich rund 100 CNG-Busse betankt. Augsburg betreibt ausschließlich CNG-Busse.

Madrid

In Madrid existiert eine Kapazität von 25.000 Nm³/h, die über 9 Kompressoren bereitgestellt und über 9 Dispenser abgegeben wird. Es lassen sich damit 120 Busse in 1 ½ h mit je bis zu 180 Nm³ (129 kg) je Bus und maximal 400 Busse in 3 ½ h betanken. Die Betankungszeit je Bus beträgt drei Minuten. Die Investitionskosten der Anlage lagen bei 47 Mio. €.

Die größten in Deutschland installierten CNG-Tankstellen neben der Anlage in Augsburg haben Kapazitäten von maximal 1.500 Nm³/h. Die Verdichterleistung der Mehrheit der CNG-Tankstellen in Deutschland liegt zwischen 100 und 150 Nm³/h [es 2010]. Solch kleine Tankstellen liegen bei Investitionskosten von etwa 200.000 €. Sie können aber nur zur Betankung von wenigen Pkw genutzt werden.

1.3.2 LNG

Die Beschreibung des aktuellen Stands der LNG-Tankstellentechnik findet statt am Beispiel der LNG-Tankstelle von Rolande LNG in Tilburg, Niederlande.

Die Tankstelle umfasst zwei Dispenser für LNG. Die Anlage wird alle drei Tage mit LNG aus Zeebrügge, vorzugsweise nachts, beliefert. Nach Auslaufen des Vertrages mit der Anlage in Zeebrügge wird das LNG aus Rotterdam geliefert werden. Der zylindrische Kryostandtank fasst 19 t LNG. Ein Trailer hat typischerweise eine Liefermenge von 16 t. (Von Chart Industries scheint es auch einen Auflieger mit 19 t Transportkapazität zu geben, der auch in Europa zulassungsfähig ist.)

Das LNG stammt aus Katar und besteht zu 93% aus Methan, zu 6% aus Ethan sowie aus längerkettigen Gasen und wird bei ca. -163 °C mit einem Druck von 0,1 bis 0,2 MPa in die Anlage eingefüllt. Danach kann die Tankstelle für ca. zwei Stunden nicht genutzt werden, da über einen Wärmetauscher das LNG auf eine Temperatur von ca. -130 °C erwärmt und auf einen Siededruck von 0,7 bis 1 MPa gebracht werden muss. Ein Problem für Tankstellenbetreiber ist es, wenn Fahrzeuge unterschiedlicher Hersteller mit einem unterschiedlichen Siededruck betankt werden müssen, da dies die Anlage verfeuert und den Betankungsvorgang verlangsamt.

Während der Besichtigung tankten acht Lkw, Fahrer trugen Schutzhandschuhe und meist Brille und sollen (was in den Sommermonaten nicht immer gegeben ist) auch lange Hosen und die Arme bedeckende Oberbekleidung tragen, da die Berührung mit der tiefkalten Flüssigkeit zu Verbrennungen führt. Fahrer identifizieren sich mit einer Tankkarte und verfügen über ein vom Betreiber der Anlage erteiltes Zertifikat, welches eine ca. 30-minütige Einweisung in die Anlage nachweist. Fahrer reinigen den Kupplungsteil des Dispensers und den Tankstutzen am Fahrzeug mit gasförmigem Stickstoff aus der Druckpistole, um zu verhindern, dass die Kupplung während des Tankvorgangs vereisen und nicht mehr geöffnet werden könnte. Kommt es zu dieser Vereisung der Betankungskupplung, wird an der Tankstelle vorrätiges warmes Wasser auf die Kupplung gegossen, bis sich diese wieder öffnen lässt.

Anschließend betätigt der Fahrer eine Starttaste, die dafür sorgt, dass eine Pumpe in der Anlage auf Betriebstemperatur heruntergekühlt wird (Pumpe darf erst ab -70 °C anlaufen, um Kavitation zu verhindern) und das ca. -130 °C kalte LNG dann zum Dispenser fördern kann. Während des Tankvorganges drückt der Fahrer eine Tot-Mann-Taste. Das Betriebspersonal der Tankstelle kann per Telefon erreicht werden und kann kleinere Probleme durch Ferndiagnose beheben. Wird die Notaustaste betätigt, muss eine autorisierte Person des Betreibers die Anlage vor Ort wieder in Betrieb nehmen. Die Anlage ist komplett kameraüberwacht.

Der Methanschlupf der Anlage muss laut Genehmigung Null sein und wird über die Software der Anlage, die die Liefermengen mit den abgegebenen bzw. vorhandenen Mengen abgleicht, nachgewiesen. Die LNG-Abgabe wird über einen Coriolismassenmesser erfasst und erfolgt mit einer Genauigkeit von maximal 0,5% Abweichung. Die Zapfsäule mit Bedienoberfläche kostet ca. 80 k€ und die Betankungskupplung mit Schlauch ca. 3,5 k€. Die Schläuche müssen wegen Versprödung gegenwärtig alle drei Monate ausgetauscht werden (Materialkosten ca. 0,5 k€). Es läuft derzeit ein Forschungsprojekt mit TNO, um einen kryofesten LNG-Schlauch von mindestens vier Jahren Haltbarkeit zu entwickeln. Die besten Ergebnisse hinsichtlich Standfestigkeit hatte man bisher mit einem Schlauch aus Glasfaserverkunstoff.

Der Zubau eines zweiten Lagertanks für LNG wäre möglich, doch würde sich dabei die Steuerung verkomplizieren. Dies will man derzeit nicht, um die Anlage möglichst einfach zu halten. Die Bedienung am Dispenser könnte noch deutlich einfacher gestaltet werden. Dabei ist es aber wichtiger, dass sich die Anlagenbauer auf ein einheitliches Bedienkonzept verständigen, sodass die Fahrer nicht an jeder Tankstelle eine andere Bedienoberfläche mit unterschiedlichen Bedienprozessen vorfinden. Die Firma Rolande LNG plant, fünf weitere LNG Tankstellen in den Niederlanden zu errichten. Dies wird von der EU im Rahmen eines TEN-V Projektes mit 50% der Kosten gefördert.
1.4 Stand der Diskussionen zu einer CNG- bzw. LNG-Infrastruktur in Deutschland

Wie im einleitenden Kapitel "Hintergrund, Zielsetzung und Abgrenzung der Arbeit" bereits erwähnt, gilt LNG als Kraftstoff für Lkw im Fernverkehr für eine Vielzahl der Akteure bereits als gesetzt, obwohl derzeit noch keine einzige LNG-Tankstelle für Lkw in Deutschland vorhanden ist. Allerdings bestehen bei den verschiedenen Interessengruppen unterschiedliche Sichtweisen, auf die im Folgenden eingegangen wird.

Tabelle 9: Interesse an / Kompetenz in CNG- / LNG-Infrastruktur in Deutschland

<table>
<thead>
<tr>
<th></th>
<th>OEM-Lkw</th>
<th>Infrastruktur-Technik</th>
<th>Betreiber / Nutzer</th>
<th>Kompetenz der ZÜSen</th>
<th>Position der Politik</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNG</td>
<td>Interesse und Kompetenz vorhanden</td>
<td>Kompetenz vorhanden</td>
<td>Kompetenz vorhanden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNG</td>
<td>Interesse und Kompetenz vorhanden</td>
<td>Interesse und Kompetenz vorhanden</td>
<td>Kompetenz vorhanden</td>
<td>Kompetenz vorhanden</td>
<td></td>
</tr>
<tr>
<td>L-CNG</td>
<td>Interesse und Kompetenz zum Teil vorhanden</td>
<td></td>
<td></td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 6: LNG-Tankstelle, Tilburg, Niederlande, 18. NOV 2014 (Foto: LBST)
Im Prinzip sind Technologien (Infrastruktur) und Motorenentwicklungs- als auch Genehmigungskompetenz in Deutschland vorhanden. Es fehlt aber an der Motivation und Überzeugung der Betreiber, potenzieller Nutzer und der Politik, und damit an der Investitionsbereitschaft, um auch Fahrzeuge und Infrastruktur für den CNG-Einsatz bereitzustellen. Kurz gesagt: Würde die Politik eine klare THG-Reduktionsstrategie verfolgen, würden alle Akteure handeln müssen!

1.4.1 Interessen der Industrie

Selbst innerhalb der Industrie ist die Sichtweise zur zukünftigen Kraftstoffversorgung von Lkw im Fernverkehr sehr inhomogen, was aufgrund der unterschiedlichen Unternehmensausrichtungen und Geschäftsmodellen nicht weiter verwundert.

Mineralölkonzerne wie Shell hingegen, die bereits ein sehr umfangreiches Know-How auf dem Gebiet von LNG u.a. durch Beteiligungen an LNG Versorgungsprojekten und Rückvergasungsanlagen, aber auch durch den Betrieb von LNG-Versorgungsstationen für Schiffe haben, setzen sich stark für LNG als zukünftigen Kraftstoff für Lkw im Fernverkehr ein. So hat Shell z.B. im OKT 2015 bereits seine vierte LNG-Tankstelle in den Niederlanden eröffnet [Shell 2015b].

1.4.2 Interessen der Betreiber / Nutzer

Betreiber und Nutzer einer CNG- bzw. LNG-Infrastruktur wie Autohöfe, Speditionen, Logistiker, etc. stehen alternativen Kraftstoffen in der Regel sehr offen gegenüber. Allerdings sind diese Geschäftszweige, wie allgemein bekannt ist und durch die jetzt bekanntgewordenen Tricksereien z.B. zur Einsparung des Harnstoffs AdBlue nur noch unterstrichen wird, sehr kostensensitiv. Investitionen werden nur getätigt, wenn sich ein rascher, mit der Firmenpolitik konformer Return on Invest (RoI) oder ein deutlicher Wettbewerbsvorteil gegenüber der Konkurrenz ergibt.
1.4.3 Kompetenzen der Genehmigungsinstitutionen

Die eingeführten „Zuständigen Überwachungsstellen“ (ZÜSen) wie die TÜVs haben teilweise langjährige Erfahrungen mit der Genehmigung von CNG-Tankstellen, sogar teilweise mit der Genehmigung von Wasserstofftankstellen.

Auch in der Zulassung von einzel- oder typgeprüften CNG-Pkw haben die ZÜSen seit Jahrzehnten Erfahrung.

Es hat sich in der Vergangenheit jedoch auch gezeigt, dass sich unterschiedliche ZÜSen oder sogar dieselbe ZÜS an verschiedenen Standorten unterschiedlich stark für alternative Kraftstoffe und Antriebe qualifiziert haben, was sehr oft von den Personen, die den Prozess abwickeln, zu tun hat. Dies hat in der Anfangsphase der CNG-Mobilität in Deutschland Anfang der 1990er Jahre teilweise dazu geführt, dass geplante Zulassungen von CNG-Pkw durch große Auto-OEM aufgegeben wurden.
2 VERGLEICHENDE ENERGIE-, THG- UND KOSTENANALYSE WtT UND WtW

2.1 Methodologie

2.1.1 Treibhausgasemissionen

In dieser Studie werden über die jeweiligen Versorgungsketten die Treibhausgase CO\(_2\), Methan (CH\(_4\)) und Lachgas (N\(_2\)O) berücksichtigt \(^4\). Das Treibhausgaspotenzial der verschiedenen Treibhausgase wird in CO\(_2\)-Äquivalenten dargestellt. Tabelle 10 zeigt das Treibhausgaspotenzial für einen Betrachtungszeitraum von 100 Jahren nach dem „Fourth Assessment Report“ (AR4) und des „Fifth Assessment Report“ (AR5) des „Intergovernmental Panel on Climate Change“ (IPCC).

Tabelle 10: Treibhausgaspotenzial verschiedener Treibhausgase [IPCC 2007], [IPCC 2013]

<table>
<thead>
<tr>
<th></th>
<th>AR4 (g \text{ CO}_2)-Äquivalente/g</th>
<th>AR5 (g \text{ CO}_2)-Äquivalente/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO(_2)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CH(_4)</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>N(_2)O</td>
<td>298</td>
<td>265</td>
</tr>
</tbody>
</table>

Es werden nur fossile CO\(_2\)-Emissionen berücksichtigt. Die Verbrennung von Biomasse ist CO\(_2\)-neutral, da nur so viel CO\(_2\) freigesetzt wird, wie vorher beim Wachstum der Pflanzen aus der Atmosphäre entzogen wurde.

Analog zu [JEC 2014] werden der Energieaufwand für den Bau von Anlagen und Fahrzeugen und die damit verbundenen Emissionen nicht berücksichtigt.

\(^4\) Andere Treibhausgase sind FCKW, FKW und SF\(_6\), die hier aber nicht relevant sind.
2.1.2 Wirkungsgradmethode

Entsprechend dem Vorgehen internationaler Organisationen (IEA, EUROSTAT, ECE) und auch dem der AG Energiebilanzen (AGEB) wird für die Berechnung des Primärenergieeinsatzes das sogenannte Wirkungsgradprinzip angewendet.

Demnach wird der Stromerzeugung aus Wasserkraft und anderen erneuerbaren Energieträgern, denen kein Heizwert beigemessen werden kann (Windkraft, Photovoltaik), der jeweilige Energieeinsatz dem „Heizwert“ der erzeugten elektrischen Energie gleichgesetzt. Das impliziert jeweils einen „Wirkungsgrad“ von 100%.

Dementsprechend wird für die Bewertung der Kernenergie von der durch die Kernreaktion freiwerdenden Wärme ausgegangen. Der Wirkungsgrad für die Erzeugung von Strom aus Kernenergie wird dabei zu 33% angenommen.

Bei Strom aus geothermischen Kraftwerken wird der Wirkungsgrad mit 10% angenommen.

2.2 Well-to-Tank

2.2.1 Diesel aus Rohöl

Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Vergleichende Energie-, THG- und Kostenanalyse WtT und WtW

Tabelle 11: Rohölpreis und daraus resultierender Dieselpreis (ohne Steuern)

<table>
<thead>
<tr>
<th>Einheit</th>
<th>Rohölpreis</th>
<th>Dieselpreis ohne Steuern</th>
</tr>
</thead>
<tbody>
<tr>
<td>USD/bbl</td>
<td>117</td>
<td>-</td>
</tr>
<tr>
<td>€/t</td>
<td>697</td>
<td>896</td>
</tr>
<tr>
<td>€/kWh</td>
<td>0,059</td>
<td>0,075</td>
</tr>
<tr>
<td>€/GJ</td>
<td>16,5</td>
<td>20,8</td>
</tr>
<tr>
<td>€/l</td>
<td>-</td>
<td>0,75</td>
</tr>
</tbody>
</table>

Die Energiesteuer für Diesel beträgt heute 0,4704 €/l. Die Mehrwertsteuer beträgt 19% und wird auf die Summe von Dieselpreis ohne Steuern und der Energiesteuer erhoben. An der Tankstelle würde der Dieselkraftstoff dann etwa 1,45 €/l kosten. Allerdings kann von Unternehmen die Mehrwertsteuer als Vorsteuer abgezogen werden, so dass für Betreiber von Nutzfahrzeugen der Kraftstoffpreis ohne Mehrwertsteuer angesetzt werden kann (etwa 1,22 €/l).

2.2.2 CNG aus Erdgas aus Norwegen (1.700 km)

Tabelle 12: Erdgasförderung in Norwegen (offshore)

<table>
<thead>
<tr>
<th>I/O</th>
<th>Einheit</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erdgas aus Erdgasfeld</td>
<td>Input</td>
<td>MJ/MJ</td>
</tr>
<tr>
<td>Mechanische Energie</td>
<td>Input</td>
<td>MJ/MJ</td>
</tr>
<tr>
<td>Erdgas</td>
<td>Output</td>
<td>MJ</td>
</tr>
</tbody>
</table>

Emissionen

CO₂	-	g/MJ	0
CH₄	-	g/MJ	0,002
N₂O	-	g/MJ	0

Der Energie-Input bezieht sich auf den unteren Heizwert des gelieferten Erdgases, d.h. der Energie-Input ist umgekehrt proportional zum Wirkungsgrad. Die mechanische Energie wird aus einer Gasturbine mit einem elektrischen Wirkungsgrad von 34% bezogen, die vor Ort auf der Offshore-Plattform installiert ist.

Tabelle 13: Erdgasaufbereitung in Norwegen (onshore)

<table>
<thead>
<tr>
<th>I/O</th>
<th>Einheit</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erdgas</td>
<td>Input</td>
<td>MJ/MJ</td>
</tr>
<tr>
<td>Strom</td>
<td>Input</td>
<td>MJ/MJ</td>
</tr>
<tr>
<td>Wärme</td>
<td>Input</td>
<td>MJ/MJ</td>
</tr>
<tr>
<td>Erdgas</td>
<td>Output</td>
<td>MJ</td>
</tr>
</tbody>
</table>
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Vergleichende Energie-, THG- und Kostenanalyse WtT und WtW

<table>
<thead>
<tr>
<th>Emissionen</th>
<th>Einheit</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>g/MJ</td>
<td>0</td>
</tr>
<tr>
<td>CH₄</td>
<td>g/MJ</td>
<td>0,00198</td>
</tr>
<tr>
<td>N₂O</td>
<td>g/MJ</td>
<td>0</td>
</tr>
</tbody>
</table>

Das aufbereitete Erdgas wird über eine Transportentfernung von 1.700 km über eine Erdgaspipeline nach Deutschland transportiert. Der Erdgastransport benötigt eine mechanische Arbeit von ca. 0,269 MJ/tkm. Der untere Heizwert von norwegischem Erdgas beträgt etwa 47 MJ/kg [GEMIS 2014].

Für die Verteilung über das Hochdruckpipelinennetz innerhalb der EU wurde analog zu [JEC 2014] eine mittlere Transportentfernung von 500 km angenommen. Die Methanverluste bei der Verteilung von Erdgas über das Hochdrucknetz liegen nach [GEMIS 2014] bei ca. 0,0006% pro 100 km. Die für die Zwischenverdichtung benötigte mechanische Arbeit beträgt etwa 0,003 MJ pro MJ Erdgas. Der Wirkungsgrad der für die Bereitstellung der mechanischen Arbeit eingesetzten Gasturbinen wurde hier für den Zeithorizont ab 2020 mit 33% angenommen.

Der Stromverbrauch einer CNG-Tankstelle beträgt bei einem Vordruck von 2,0 MPa etwa 0,014 MJ pro MJ CNG. Der Strom dafür wird aus dem Strommix EU³ nach [GEMIS 2014] (0,4 kV-Ebene) bezogen.

³
Der Erdgaspreis wird nach [EWI et al. 2014] mit 0,030 € pro kWh bezogen auf den unteren Heizwert angenommen. Dazu kommen noch Kosten für die lokale Verteilung (0,0036 € pro kWh Erdgas bezogen auf den unteren Heizwert) und die Tankstelle.

Tabelle 14 zeigt die technischen und ökonomischen Daten für die CNG-Tankstelle für die Betankung schwerer Lkw.

Tabelle 14: Technische und ökonomische Daten CNG-Tankstelle

<table>
<thead>
<tr>
<th>Einheit</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Dispenser</td>
<td>2</td>
</tr>
<tr>
<td>Kraftstoffabsatz</td>
<td>Mio. kWh</td>
</tr>
<tr>
<td>Stromverbrauch</td>
<td>MJ/MJ,CNG</td>
</tr>
<tr>
<td>Investition</td>
<td></td>
</tr>
<tr>
<td>Gaseinleitungsstrecke</td>
<td>€</td>
</tr>
<tr>
<td>CNG-Speicher</td>
<td>€</td>
</tr>
<tr>
<td>Kompressor</td>
<td>€</td>
</tr>
<tr>
<td>Kühlsystem für Kompressoren</td>
<td>€</td>
</tr>
<tr>
<td>Rückkühler Kühkreislauf</td>
<td>€</td>
</tr>
<tr>
<td>Steuerung und Schaltschränke für Kompressoren</td>
<td>€</td>
</tr>
<tr>
<td>Einrichtungen zur Datenfernübertragung</td>
<td>€</td>
</tr>
<tr>
<td>Odoreinrichtung</td>
<td>€</td>
</tr>
<tr>
<td>Gebäudemodule, Beton</td>
<td>€</td>
</tr>
<tr>
<td>Gasausleitungsstrecke</td>
<td>€</td>
</tr>
<tr>
<td>MF-Block PF</td>
<td>€</td>
</tr>
<tr>
<td>Dispenser</td>
<td>€</td>
</tr>
<tr>
<td>Sequencing Block für Zapfsäule</td>
<td>€</td>
</tr>
<tr>
<td>Baukosten (Erdarbeiten, Boden, Dach, Bezahlsystem)</td>
<td>€</td>
</tr>
<tr>
<td>Genehmigung*</td>
<td>€</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>€</td>
</tr>
<tr>
<td>Werkmontage, Werkprüfung</td>
<td>€</td>
</tr>
<tr>
<td>Transport, Errichtung vor Ort, Rohrleitungen, Kabel, Eichungen</td>
<td>€</td>
</tr>
<tr>
<td>Projektabwicklung Dokumentation</td>
<td>€</td>
</tr>
<tr>
<td>Summe</td>
<td>€</td>
</tr>
</tbody>
</table>

Laufende Kosten

<table>
<thead>
<tr>
<th>€/a</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wartung und Instandhaltung Kompressor</td>
<td>4.877</td>
</tr>
<tr>
<td>Sicherheitsüberprüfung Drucktanks</td>
<td>2.880</td>
</tr>
<tr>
<td>Kalibrierung Dispenser</td>
<td>1.430</td>
</tr>
</tbody>
</table>

* Genehmigung nach BetrSichV reicht aus, da Lagermenge unter 3 t Gas [Elliger 2016]

** Baukosten, Werkprüfung, Transport und Errichtung vor Ort lassen sich ggf. deutlich kostengünstiger realisieren (evtl. 10-15% günstiger).

INFOBOX CNG-TANKSTELLE

Obwohl bei der Erstellung dieser Studie darauf geachtet wurde, technische und ökonomische Daten von CNG und LNG möglichst vergleichbar darzustellen, war dies nicht an Stellen möglich. Bei der Zusammenstellung der Investitionskosten der CNG-Tankstelle...
wurde ein redundantes System mit zwei Verdichtern berücksichtigt, da dies unter Berücksichtigung des vorgesehen Anwendungsfalls als absolut geboten angesehen wurde. Für die LNG-Tankstelle stand jedoch keine redundante Auslegung zur Verfügung, so dass ein direkter Vergleich der jeweiligen gesamten Investitionskosten nur begrenzt sinnvoll ist.

Die Lebensdauer der Tankstelle wird mit 15 Jahren und der Zinssatz mit 4% angenommen.

2.2.3 CNG aus Erdgas aus Iran (4.000 km)

| Tabelle 15: Erdgasförderung und -aufbereitung nach [JEC 2014] |
|-----------------|-----------------|-----------------|
| I/O | Einheit | Wert |
| Erdgas aus Erdgasfeld | Input | MJ/MJ | 1,024 |
| Erdgas | Output | MJ | 1,000 |
| Emissionen | | |
| CO₂ | - | g/MJ | 1,65 |
| CH₄ | - | g/MJ | 0,083 |
| N₂O | - | g/MJ | 0,000 |

Der Energie-Input bezieht sich auf den unteren Heizwert des gelieferten Erdgases, d.h. der Energie-Input ist umgekehrt proportional zum Wirkungsgrad. Das aufbereitete Erdgas wird über eine Entfernung von 4.000 km über Pipeline vom Erdgasfeld in die EU transportiert.

Analog zu [JEC 2014] wurde die mittlere Entfernung für die Verteilung von Erdgas über das Hochdruckpipelinenetz mit 500 km angenommen. Die Methanverluste bei der Verteilung von Erdgas über das Hochdrucknetz liegen nach [GEMIS 2014] bei ca. 0,0006% pro 100 km. Die für die Zwischenverdichtung benötigte mechanische Arbeit beträgt etwa 0,003 MJ pro MJ Erdgas. Der Wirkungsgrad der für die Bereitstellung der mechanischen Arbeit eingesetzten Gasturbinen wurde hier für den Zeithorizont ab 2020 mit 33% angenommen.

Für die CNG-Tankstelle wurden die gleichen Annahmen getroffen wie für Erdgas aus Norwegen.

2.2.4 CNG aus Erdgas aus Russland (5.000 km)

| Tabelle 16: Erdgasförderung in Russland (onshore) [GEMIS 2014] |
|----------------|--------------|----------|
| I/O | Einheit | Wert |
| Erdgas aus Erdgasfeld | Input | MJ/MJ |
| Strom | Input | MJ/MJ |
| Erdgas | Output | MJ |

<table>
<thead>
<tr>
<th>Emissionen</th>
<th>Einheit</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>g/MJ</td>
<td>0</td>
</tr>
<tr>
<td>CH₄</td>
<td>g/MJ</td>
<td>0,032</td>
</tr>
<tr>
<td>N₂O</td>
<td>g/MJ</td>
<td>0</td>
</tr>
</tbody>
</table>
Tabelle 17: Erdgasaufbereitung in Russland (onshore) [GEMIS 2014]

<table>
<thead>
<tr>
<th>I/O</th>
<th>Einheit</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erdgas</td>
<td>Input</td>
<td>MJ/MJ</td>
</tr>
<tr>
<td>Strom</td>
<td>Input</td>
<td>MJ/MJ</td>
</tr>
<tr>
<td>Wärme</td>
<td>Input</td>
<td>MJ/MJ</td>
</tr>
<tr>
<td>Erdgas</td>
<td>Output</td>
<td>MJ</td>
</tr>
</tbody>
</table>

Emissionen

<table>
<thead>
<tr>
<th>Gas</th>
<th>Einheit</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>g/MJ</td>
<td>0</td>
</tr>
<tr>
<td>CH₄</td>
<td>g/MJ</td>
<td>0,0427</td>
</tr>
<tr>
<td>N₂O</td>
<td>g/MJ</td>
<td>0</td>
</tr>
</tbody>
</table>

Der Strom für die Förderung und Aufbereitung von russischem Erdgas wird aus dem russischen Strommix bezogen. Die Wärme wird aus einem mit Erdgas betriebenen Wärmeerzeuger mit einem Wirkungsgrad von etwa 89% bezogen [GEMIS 2014].

Der Erdgastransport via Pipeline über eine Entfernung von 5.000 km benötigt eine mechanische Arbeit von ca. 0,40 MJ/tkm [GEMIS 2014]. Der untere Heizwert von Erdgas beträgt ca. 50 MJ/kg. Die Erdgasverluste durch Leckagen entlang der Transportroute betragen etwa 0,8% ([GEMIS 2014] gibt unter anderem [Wuppertal 2005] als Quelle an).

Analog zu [JEC 2014] wurde die mittlere Entfernung für die Verteilung von Erdgas über das Hochdruckpipelinenetz mit 500 km angenommen. Die Methanverluste bei der Verteilung von Erdgas über das Hochdrucknetz liegen nach [GEMIS 2014] bei ca. 0,0006% pro 100 km. Die für die Zwischenverdichtung benötigte mechanische Arbeit beträgt etwa 0,003 MJ pro MJ Erdgas. Der Wirkungsgrad der für die Bereitstellung der mechanischen Arbeit eingesetzten Gasturbinen wurde hier für den Zeithorizont ab 2020 mit 33% angenommen.

Für die CNG-Tankstelle wurden die gleichen Annahmen getroffen wie für Erdgas aus Norwegen.

2.2.5 LNG Import aus Katar / Iran

Erdgas wird in Katar gefördert, aufbereitet und in der Nähe der Erdgasfelder verflüssigt. Für die Erdgasförderung und -aufbereitung wurden die gleichen Annahmen getroffen wie
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Vergleichende Energie-, THG- und Kostenanalyse WtT und WtW

Die Preise für über Pipeline angeliefertes Erdgas und Erdgas in Form von LNG weisen große Schwankungen auf. Der Preis für LNG liegt dabei im Mittel über dem von Erdgas, das über Pipeline angeliefert wurde (siehe Abbildung 7).

Abbildung 7: Entwicklung der Preise für Erdgas und LNG (LBST auf Basis [EIA 2015])

Der Preis für LNG lag im langjährigen Mittel bei etwa 15% über dem von Erdgas, zumindest in den USA. In dieser Studie wurde angenommen, dass das Preisverhältnis zwischen LNG und Erdgas, das über Pipeline angeliefert wurde, in der EU auf dem gleichen Niveau liegt wie in den USA.
Der Erdgaspreis wird in [EWI et al. 2014] mit 0,030 €/kWh angegeben. Bei einem angenommen Aufschlag von 15% für LNG ergeben sich daraus etwa 0,034 €/kWh bezogen auf den unteren Heizwert.

Dazu kommen noch Kosten für den Transport des LNG zur Tankstelle und die Tankstelle selbst.

Das LNG wird mit Lkw über eineTransportentfernung von 500 Kilometern (einfach) zu den Tankstellen transportiert.

Tabelle 18 zeigt die technischen und ökonomischen Daten für den LNG-Tanksattelauflieger.

Tabelle 18: Technische und ökonomische Daten Tanksattelauflieger

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportkapazität</td>
<td>16 t LNG</td>
</tr>
<tr>
<td>Investitionsbedarf</td>
<td>207.000 €</td>
</tr>
<tr>
<td>Abschreibungsdauer</td>
<td>15 Jahre</td>
</tr>
<tr>
<td>Steuer, Versicherung, Verwaltung, Unterstellung</td>
<td>10.794 €/a</td>
</tr>
<tr>
<td>Wartung und Instandhaltung</td>
<td>0,0471 €/km</td>
</tr>
</tbody>
</table>

Der Sattelauflieger wird von einer Zugmaschine gezogen. Tabelle 19 zeigt die technischen und ökonomischen Daten für die Zugmaschine.

Tabelle 19: Technische und ökonomische Daten Zugmaschine

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kraftstoffverbrauch</td>
<td>31 l Diesel pro 100 km</td>
</tr>
<tr>
<td>Investition</td>
<td>101.000 €</td>
</tr>
<tr>
<td>Lebensdauer</td>
<td>1.000.000 km</td>
</tr>
<tr>
<td>Steuer, Versicherung, Verwaltung, Unterstellung</td>
<td>15.871 €/a</td>
</tr>
<tr>
<td>Wartung und Instandhaltung</td>
<td>0,1705 €/km</td>
</tr>
</tbody>
</table>
Der Investitionsbedarf sowie die Kosten für Steuer, Versicherung, Verwaltung, Unterstellung, Wartung und Instandhaltung für die Zugmaschine wurden aus [LAO Katalog 2015] entnommen.

Abbildung 8: LNG-Tankstelle, Tilburg, Niederlande, 18. NOV 2014 (Foto: LBST)

Der Stromverbrauch wurde aus der Angabe von 230 V und einem Volumenstrom von 190 l LNG pro Minute auf dem Typenschild der Kryopumpe abgeleitet. Bei einem maximalen Strom von 16 A ergibt sich daraus ein Stromverbrauch von etwa 0,000055 kWh pro kWh LNG bezogen auf den unteren Heizwert.

Tabelle 20 zeigt die technischen und ökonomischen Daten für die LNG-Tankstelle auf Basis von Daten von Rolande LNG. Da mehr als 3 t Gas gelagert werden, ist neben der Genehmigung nach BetrSichV (etwa 2.000 €) ein Genehmigungsverfahren nach BImSchG (etwa 8.000 €, wenn die relevanten Prozesse etabliert sind) erforderlich. Die Kosten für die Genehmigung wurden aus [Elliger 2016] entnommen, die Kosten für Projektabwicklung und Dokumentation sowie Einrichtungen zur Datenfernübertragung von [Braun 2016].

Tabelle 20: Technische und ökonomische Daten der LNG-Tankstelle

<table>
<thead>
<tr>
<th>Einheit</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Dispenser</td>
<td>2</td>
</tr>
<tr>
<td>Kraftstoffabsatz</td>
<td>Mio. kWh 22,4</td>
</tr>
<tr>
<td>Stromverbrauch</td>
<td>MJ/MJ LNG 0.000055</td>
</tr>
</tbody>
</table>

Investition

<table>
<thead>
<tr>
<th>Einheit</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispenser</td>
<td>€ 189.000*</td>
</tr>
<tr>
<td>LNG-Speicher</td>
<td>€ 145.000</td>
</tr>
<tr>
<td>Kryopumpe inkl. Steuerung und Regelventile</td>
<td>€ 129.000</td>
</tr>
<tr>
<td>CNG-Speicher für Boil-Off-Nutzung</td>
<td>€ 20.000</td>
</tr>
<tr>
<td>Kompressor für Boil-Off-Nutzung</td>
<td>€ 25.000</td>
</tr>
<tr>
<td>Einrichtungen zur Datenfernübertragung</td>
<td>€ 10.000</td>
</tr>
<tr>
<td>Odorierenrichtung für Boil-Off-Nutzung</td>
<td>€ 26.000</td>
</tr>
<tr>
<td>Baukosten (Erdarbeiten, Boden, Dach, Bezahlsystem, etc.)</td>
<td>€ 400.000</td>
</tr>
<tr>
<td>Genehmigung</td>
<td>€ 10.000</td>
</tr>
<tr>
<td>Projektabwicklung, Dokumentation</td>
<td>€ 80.000</td>
</tr>
<tr>
<td>Summe Investition</td>
<td>€ 1.034.000</td>
</tr>
</tbody>
</table>

Laufende Kosten

<table>
<thead>
<tr>
<th>Einheit</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wartung und Prüfung</td>
<td>€/a 17.550</td>
</tr>
<tr>
<td>Wartung und Instandhaltung Kompressor</td>
<td>€/a 2.500</td>
</tr>
<tr>
<td>Ersatzteile</td>
<td>€/a 4.000</td>
</tr>
<tr>
<td>Stickstoff</td>
<td>€/a 5.200</td>
</tr>
<tr>
<td>Kalibrierung Dispenser</td>
<td>€/a 1.430</td>
</tr>
</tbody>
</table>

* 2 LNG Dispenser (83.500 €/Stück) plus 1 CNG Dispenser (22.000 €/Stück); **Genehmigung nach BetrSichV (heute: 25.000 €; in Zukunft nach etwas Erfahrung: 8.000 €) und BImSchG (2.000 €) erforderlich, da Lagermenge über 3 t Gas [Elliger 2016]
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Vergleichende Energie-, THG- und Kostenanalyse WtT und WtW

Die Lebensdauer der Tankstelle wird mit 15 Jahren und der Zinssatz mit 4% angenommen.

2.2.6 LNG Import aus Trinidad und Tobago

Die Transportentfernung für den Export von LNG wird analog zu [JEC 2014] mit 5.500 nautischen Meilen (10.186 km) angenommen, was in etwa der Entfernung zwischen Trinidad und Tobago und Zeebrügge entspricht. Von dort wird es mit Lkw über eine Transportentfernung von 500 Kilometer zu den Tankstellen transportiert.

Der Pfad für die Bereitstellung von LNG aus Trinidad und Tobago entspricht somit dem Pfad „GRLG1“ in [JEC 2014].

Für die Kosten der Bereitstellung von LNG aus Trinidad und Tobago wurden die gleichen Annahmen getroffen wie für die Bereitstellung von LNG aus Katar.

2.2.7 LNG Import aus USA (Shale Gas)
Seit einigen Jahren wird der Import von Erdgas aus Schieferformationen in den USA in Form von LNG diskutiert (siehe Kapitel 3).

Tabelle 21: Treibhausgasemissionen aus Exploration, Förderung und Verarbeitung von Shale Gas

<table>
<thead>
<tr>
<th></th>
<th>g CO₂/MJ*</th>
<th>g CH₄/MJ*</th>
<th>g N₂O/MJ</th>
<th>g CO₂-Äquiv/MJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freilegen Baugelände</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erdbewegungen</td>
<td>0,018</td>
<td>0,000</td>
<td>0,000</td>
<td>0,018</td>
</tr>
<tr>
<td>Räumen und Roden</td>
<td>0,018</td>
<td>0,000</td>
<td>0,000</td>
<td>0,018</td>
</tr>
<tr>
<td>Bereitstellung Materialien</td>
<td>0,550</td>
<td>0,000</td>
<td>0,000</td>
<td>0,550</td>
</tr>
<tr>
<td>Exploration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbrennungsprozesse (Förderstelle)</td>
<td>0,660</td>
<td>0,007</td>
<td>0,000</td>
<td>0,860</td>
</tr>
<tr>
<td>Verbrennungsprozesse (Fahrzeuge)</td>
<td>0,293</td>
<td>0,007</td>
<td>0,000</td>
<td>0,493</td>
</tr>
<tr>
<td>Komplettierung</td>
<td>0,733</td>
<td>0,254</td>
<td>0,000</td>
<td>8,346</td>
</tr>
<tr>
<td>Erdgasförderung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbrennungsprozesse</td>
<td>2,089</td>
<td>0,000</td>
<td>0,000</td>
<td>2,089</td>
</tr>
<tr>
<td>Laugentank</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>Diffuse Emissionen</td>
<td>0,000</td>
<td>0,147</td>
<td>0,000</td>
<td>4,408</td>
</tr>
<tr>
<td>Erdgasaufbereitung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbrennungsprozesse</td>
<td>1,905</td>
<td>0,013</td>
<td>0,000</td>
<td>2,306</td>
</tr>
<tr>
<td>Diffuse Emissionen</td>
<td>0,330</td>
<td>0,027</td>
<td>0,000</td>
<td>1,131</td>
</tr>
<tr>
<td>Summe</td>
<td>6,60</td>
<td>0,454</td>
<td>0,00</td>
<td>20,219</td>
</tr>
</tbody>
</table>

* In [Howarth et al. 2011] wurden die CO₂- und CH₄-Emissionen jeweils in g Kohlenstoff angegeben. Sie wurden daher in g CO₂ und CH₄ umgerechnet.

In [Howarth et al 2011] und in [Howarth 2014] wurde für die Berechnung der Treibhausgasemissionen bei den Treibhausgaspotenzialen von CH₄ und N₂O neben den üblicherweise verwendeten Betrachtungszeitraum von 100 Jahren auch eine Variante mit 20 Jahren gerechnet. Das Treibhausgaspotenzial von CH₄ würde dann von 30 g CO₂-Äquivalent/g auf 85 g CO₂-Äquivalent/g steigen, was dann zu erheblich höheren Treibhausgasemissionen für die Gewinnung von Shale Gas führt. Die Treibhausgasemissionen aus der Bereitstellung und Nutzung von Shale Gas würde sich dann denen der Bereitstellung und Nutzung von Steinkohle annähern, bei ungünstigen Annahmen (alles Methan aus der Komplettierung wird als Methan in die Atmosphäre freigesetzt) sogar darüber liegen. Ein kürzerer Betrachtungszeitraum für das Treibhausgaspotenzial wird damit begründet, dass Kipppunkte erreicht werden könnten, nach denen sich die Klimaerwärmung durch Rückkopplungen verstärkt.

In dieser Studie wurde aus Gründen der Vergleichbarkeit nur der üblicherweise verwendete Betrachtungszeitraum von 100 Jahren angenommen.
Luftmessungen über den Fördergebieten im Haynesville-Shale (Arkansas, Louisiana, Texas) ergaben Methanfreisetzungen von etwa 89 t/h, was bei einer Gasproduktion von 5,9 Mio. Nm³/h etwa 2,1% des geförderten Gases entspricht (siehe Kapitel 3). Daraus ergeben sich etwa 0,42 g CH₄/MJ, was in etwa auf dem Niveau der in Tabelle 21 angegebenen Werte liegt. In Uintah Shale (Utah) wurden sogar Methanverluste von 6,2 bis 11,7% des geförderten Gas ermittelt, was CH₄-Emissionen von 1,24 bis 2,34 g/MJ entspricht.

Der Großteil der spezifischen Kosten für die Exploration, Förderung und Aufbereitung von Erdgas resultiert aus den Kosten für die Bohrung. Bei Shale Gas sind die Erträge pro Bohrung über die Lebensdauer jedoch erheblich niedriger als bei konventionellem Erdgas. Hinzu kommen die Kosten für den Transport zum Hafen über Pipeline, die Verflüssigung, den Transport des LNG in die EU, den Transport zur Tankstelle über Lkw und die Kosten der LNG-Tankstelle. Die spezifischen Kosten für LNG aus Shale Gas aus den USA dürften auf jeden Fall höher sein als bei LNG aus konventionellem Erdgas aus Katar oder Trinidad und Tobago (siehe Kapitel 3).

2.2.8 Ergebnisse Well-to-Tank

Abb Bildung 9: Energieverlust „Well-to-Tank“, aufgeteilt in einzelne Prozessschritte

Der Energieeinsatz kann auch als Kehrwert des Kraftstoffbereitstellungswirkungsgrads dargestellt werden. In diesem Fall ist der Energiegehalt des bereitgestellten Kraftstoffs in der Darstellung enthalten. Abbildung 10 zeigt die Energieverluste über die einzelnen Prozessschritte für die Bereitstellung von CNG und LNG im Vergleich zu Dieselkraftstoff aus Rohöl.
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Vergleichende Energie-, THG- und Kostenanalyse WtT und WtW

Abbildung 10: Energieverlust für die Bereitstellung und Nutzung von Dieselkraftstoff, CNG und LNG, aufgeteilt in einzelne Prozessschritte

Abbildung 11 zeigt den Energieeinsatz für die Bereitstellung von CNG und LNG im Vergleich zu Dieselkraftstoff, aufgeteilt in fossile, nukleare und erneuerbare Primärenergie.
Abbildung 11: Energieverlust für die Bereitstellung und Nutzung von Dieselkraftstoff, CNG und LNG, aufgeteilt in fossile, nukleare und erneuerbare Energieträger

Abbildung 12 zeigt die Treibhausgasemissionen „Well-to-Tank“ von CNG und LNG im Vergleich zu Dieselkraftstoff aus konventionellem Rohöl.
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Vergleichende Energie-, THG- und Kostenanalyse WtT und WtW

Abbildung 12: Treibhausgasemissionen „Well-to-Tank“, aufgeteilt in einzelne Prozessschritte

Abbildung 13 zeigt die Treibhausgasemissionen aus der Bereitstellung und Nutzung von CNG und LNG im Vergleich zu Diesel aus konventionellem Rohöl.
Abbildung 13: Treibhausgasmissionen aus Bereitstellung und Nutzung von Dieselkraftstoff, CNG und LNG, aufgeteilt in einzelne Prozessschritte

Tabelle 22, Tabelle 23 und Tabelle 24 zeigen die Treibhausgasmissionen aus der Bereitstellung und Nutzung von Dieselkraftstoff, CNG und LNG, aufgeteilt in einzelne Prozessschritte (je MJ, je kWh und je Nm³).
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr

Vergleichende Energie-, THG- und Kostenanalyse WtT und WtW

Tabelle 22: Treibhausgasemissionen aus Bereitstellung und Nutzung von Dieselkraftstoff, CNG und LNG, aufgeteilt in einzelne Prozessschritte (g CO₂-Äquivalent/MJ)

<table>
<thead>
<tr>
<th></th>
<th>Diesel aus Rohöl</th>
<th>CNG 1,700 km (Norwegen)</th>
<th>CNG 4,000 km (Iran)</th>
<th>CNG 5,000 km (Russland)</th>
<th>LNG Katar</th>
<th>LNG T&T</th>
<th>LNG USA (Shale Gas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rohölförderung</td>
<td>4,8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rohöltransport</td>
<td>1,0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Raffinerie</td>
<td>8,6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Erdgasförderung, -aufbereitung</td>
<td>-</td>
<td>0,4</td>
<td>4,6</td>
<td>3,8</td>
<td>4,5</td>
<td>4,5</td>
<td>23,5</td>
</tr>
<tr>
<td>Erdgastransport über Pipeline</td>
<td>-</td>
<td>1,8</td>
<td>8,2</td>
<td>12,0</td>
<td>0,0</td>
<td>0,0</td>
<td>1,9</td>
</tr>
<tr>
<td>Lokales Erdgasnetz</td>
<td>-</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Verflüssigung</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LNG-Transport nach EU</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7,6</td>
<td>6,1</td>
<td>5,9</td>
</tr>
<tr>
<td>Kraftstoffverteilung</td>
<td>0,6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4,1</td>
<td>4,1</td>
<td>4,1</td>
</tr>
<tr>
<td>Tankstelle</td>
<td>0,5</td>
<td>1,5</td>
<td>1,5</td>
<td>1,5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Summe WTT</td>
<td>15,5</td>
<td>4,2</td>
<td>14,8</td>
<td>17,7</td>
<td>22,0</td>
<td>20,4</td>
<td>40,9</td>
</tr>
<tr>
<td>Nutzung (Verbrennung)</td>
<td>73,2</td>
<td>57,2</td>
<td>55,1</td>
<td>55,1</td>
<td>55,0</td>
<td>55,0</td>
<td>55,0</td>
</tr>
<tr>
<td>Summe WTT + Nutzung</td>
<td>88,7</td>
<td>61,4</td>
<td>69,9</td>
<td>72,8</td>
<td>77,0</td>
<td>75,4</td>
<td>95,9</td>
</tr>
</tbody>
</table>

Tabelle 23: Treibhausgasemissionen aus Bereitstellung und Nutzung von Dieselkraftstoff, CNG und LNG, aufgeteilt in einzelne Prozessschritte (g CO₂-Äquivalent/kWh)

<table>
<thead>
<tr>
<th></th>
<th>Diesel aus Rohöl</th>
<th>CNG 1,700 km (Norwegen)</th>
<th>CNG 4,000 km (Iran)</th>
<th>CNG 5,000 km (Russland)</th>
<th>LNG Katar</th>
<th>LNG T&T</th>
<th>LNG USA (Shale Gas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rohölförderung</td>
<td>17,3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rohöltransport</td>
<td>3,5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Raffinerie</td>
<td>31,0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Erdgasförderung, -aufbereitung</td>
<td>-</td>
<td>1,5</td>
<td>16,5</td>
<td>13,5</td>
<td>16,3</td>
<td>16,1</td>
<td>84,5</td>
</tr>
<tr>
<td>Erdgastransport über Pipeline</td>
<td>-</td>
<td>6,4</td>
<td>29,6</td>
<td>43,1</td>
<td>0,0</td>
<td>0,0</td>
<td>7,0</td>
</tr>
<tr>
<td>Lokales Erdgasnetz</td>
<td>-</td>
<td>1,9</td>
<td>1,9</td>
<td>1,9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Verflüssigung</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20,7</td>
<td>20,5</td>
<td>19,9</td>
</tr>
<tr>
<td>LNG-Transport nach EU</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>27,5</td>
<td>22,1</td>
<td>21,1</td>
</tr>
<tr>
<td>Kraftstoffverteilung</td>
<td>2,0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>14,6</td>
<td>14,6</td>
<td>14,6</td>
</tr>
<tr>
<td>Tankstelle</td>
<td>1,9</td>
<td>5,4</td>
<td>5,4</td>
<td>5,4</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Summe WTT</td>
<td>55,6</td>
<td>15,1</td>
<td>53,3</td>
<td>63,9</td>
<td>79,1</td>
<td>73,3</td>
<td>147,1</td>
</tr>
<tr>
<td>Nutzung (Verbrennung)</td>
<td>263,7</td>
<td>206,0</td>
<td>198,3</td>
<td>198,3</td>
<td>198</td>
<td>198</td>
<td>198</td>
</tr>
<tr>
<td>Summe WTT + Nutzung</td>
<td>319,3</td>
<td>221,0</td>
<td>251,6</td>
<td>262,2</td>
<td>277,1</td>
<td>271,3</td>
<td>345,1</td>
</tr>
</tbody>
</table>
Tabelle 24: Treibhausgasemissionen aus Bereitstellung und Nutzung von Dieselkraftstoff, CNG und LNG, aufgeteilt in einzelne Prozessschritte (g CO₂-Äquivalent/Nm³)

<table>
<thead>
<tr>
<th></th>
<th>Diesel aus Rohöl</th>
<th>CNG 1.700 km (Norwegen)</th>
<th>CNG 4.000 km (Iran)</th>
<th>CNG 5.000 km (Russland)</th>
<th>LNG Katar</th>
<th>LNG T&T</th>
<th>LNG USA (Shale Gas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rohölförderung</td>
<td>173</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rohöltransport</td>
<td>35</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Raffinerie</td>
<td>310</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Erdgasförderung, -aufbereitung</td>
<td>-</td>
<td>15</td>
<td>165</td>
<td>135</td>
<td>163</td>
<td>161</td>
<td>845</td>
</tr>
<tr>
<td>Erdgastransport über Pipeline</td>
<td>-</td>
<td>64</td>
<td>296</td>
<td>431</td>
<td>0</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td>Lokales Erdgasnetz</td>
<td>-</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Verflüssigung</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>207</td>
<td>205</td>
<td>199</td>
</tr>
<tr>
<td>LNG-Transport nach EU</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>275</td>
<td>221</td>
<td>211</td>
</tr>
<tr>
<td>Kraftstoffverteilung</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>146</td>
<td>146</td>
<td>146</td>
</tr>
<tr>
<td>Tankstelle</td>
<td>19</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Summe WTT</td>
<td>556</td>
<td>151</td>
<td>533</td>
<td>639</td>
<td>791</td>
<td>733</td>
<td>1.471</td>
</tr>
<tr>
<td>Nutzung (Verbrennung)</td>
<td>2.637</td>
<td>2.060</td>
<td>1.983</td>
<td>1.983</td>
<td>1.980</td>
<td>1.980</td>
<td>1.980</td>
</tr>
</tbody>
</table>

Tabelle 25: Kosten für die Bereitstellung von LNG und CNG im Vergleich zu Dieselkraftstoff aus Rohöl (Wegfall der Steuerermäßigung von Erdgas als Kraftstoff nach 31. DEZ 2018)

<table>
<thead>
<tr>
<th></th>
<th>Diesel (€/l Diesel)</th>
<th>LNG (€/l Dieseläquivalent)</th>
<th>CNG (€/l Dieseläquivalent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erdgasbereitstellung ohne Verteilung</td>
<td>0,00</td>
<td>0,00</td>
<td>0,30</td>
</tr>
<tr>
<td>LNG frei Zeebrügge</td>
<td>0,00</td>
<td>0,34</td>
<td>0,00</td>
</tr>
<tr>
<td>Erdgasnetz</td>
<td>0,00</td>
<td>0,00</td>
<td>0,03</td>
</tr>
<tr>
<td>Verteilung über Lkw</td>
<td>0,00</td>
<td>0,11</td>
<td>0,00</td>
</tr>
<tr>
<td>Tankstelle</td>
<td>0,00</td>
<td>0,06</td>
<td>0,10</td>
</tr>
<tr>
<td>Diesel aus Rohöl</td>
<td>0,75</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Energiesteuer</td>
<td>0,47</td>
<td>0,35</td>
<td>0,35</td>
</tr>
<tr>
<td>Summe inklusive Energiesteuer</td>
<td>1,22</td>
<td>0,85</td>
<td>0,78</td>
</tr>
<tr>
<td>Summe inklusive Energie- und MwSt.</td>
<td>1,45</td>
<td>1,02</td>
<td>0,93</td>
</tr>
<tr>
<td>Summe ohne Steuern</td>
<td>0,75</td>
<td>0,51</td>
<td>0,44</td>
</tr>
</tbody>
</table>

Es gibt zurzeit die Diskussion, ob die Steuerermäßigung für Erdgas als Kraftstoff nach §2 Absatz 2 EnergieStG über das Jahr 2018 hinaus verlängert werden soll. Tabelle 26 zeigt die Kosten für die Bereitstellung von LNG und CNG im Vergleich zu Dieselkraftstoff aus Rohöl inklusive Energiesteuer für den Fall, dass die Steuerermäßigung für Erdgas als Kraftstoff auch im Jahr 2020 noch existiert (Verlängerung der Steuerermäßigung von Erdgas als Kraftstoff über das Jahr 2018 hinaus).
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Vergleichende Energie-, THG- und Kostenanalyse WtT und WtW

Tabelle 26: Kosten für die Bereitstellung von LNG und CNG im Vergleich zu Dieselkraftstoff aus Rohöl (Verlängerung der Steuerermäßigung von Erdgas als Kraftstoff über das Jahr 2018 hinaus)

<table>
<thead>
<tr>
<th></th>
<th>Diesel (€/l Diesel)</th>
<th>LNG (€/l Dieseläquivalent)</th>
<th>CNG (€/l Dieseläquivalent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erdgasbereitstellung ohne Verteilung</td>
<td>0,00</td>
<td>0,00</td>
<td>0,30</td>
</tr>
<tr>
<td>LNG frei Zeebrügge</td>
<td>0,00</td>
<td>0,34</td>
<td>0,00</td>
</tr>
<tr>
<td>Erdgasnetz</td>
<td>0,00</td>
<td>0,00</td>
<td>0,03</td>
</tr>
<tr>
<td>Verteilung über Lkw</td>
<td>0,00</td>
<td>0,11</td>
<td>0,00</td>
</tr>
<tr>
<td>Tankstelle</td>
<td>0,00</td>
<td>0,06</td>
<td>0,10</td>
</tr>
<tr>
<td>Diesel aus Rohöl</td>
<td>0,75</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Energiesteuer</td>
<td>0,47</td>
<td>0,15</td>
<td>0,15</td>
</tr>
<tr>
<td>Summe inklusive Energiesteuer</td>
<td>1,22</td>
<td>0,66</td>
<td>0,59</td>
</tr>
<tr>
<td>Summe inklusive Energie- und MwSt.</td>
<td>1,45</td>
<td>0,79</td>
<td>0,70</td>
</tr>
<tr>
<td>Summe ohne Steuern</td>
<td>0,75</td>
<td>0,51</td>
<td>0,44</td>
</tr>
</tbody>
</table>

Bleibt die derzzeitige Steuerermäßigung auf Erdgas als Kraftstoff auch im Jahr 2020 bestehen, ergeben sich für CNG und LNG im Vergleich zu Dieselkraftstoff aus Rohöl um etwa mehr als 40% niedrigere spezifische Kraftstoffkosten. CNG und LNG unterschreiten dann sogar den Anfang dieses Jahres beobachteten Dieselpreis an der Tankstelle von etwa 1,00 €/l.

2.3 Tank-to-Wheel

Es werden Lkw mit einem zulässigen Gesamtgewicht von 40 t betrachtet.

Im Fall des HPDI-Motors wurde beim CNG-Lkw ein Mehrverbrauch für einen Kompressor an Bord des Fahrzeugs berücksichtigt, der den erforderlichen Einblasdruck bereitstellt. Der Motorenhersteller Westport hat für den Einsatz von CNG solch einen Kompressor vorgesehen [Westport 2015c]. Für die Berechnung des Mehrverbrauchs des HPDI-Motors im Betrieb mit CNG im Vergleich zu LNG wurde eine 3-stufige isentrope Verdichtung
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Vergleichende Energie-, THG- und Kostenanalyse WtT und WtW

angenommen. Der CNG-Tank wird im Bereich zwischen 2 und 20 MPa betrieben. Der mechanische Wirkungsgrad des On-Board-Kompressors wird mit 50% angenommen, der Wirkungsgrad des HPDI-Motors über den Fahrzyklus mit 39%. Daraus ergibt sich ein Mehrverbrauch von etwa 2%.

Bei den HPDI-Motoren sind bisher kaum Daten über die Emission von CH₄ und N₂O verfügbar. Nach [Dixon 2009] liegen die CH₄-Emissionen zwischen 0,671 g pro kWh mechanischer Arbeit (0,5 g/bhp-hr) im „ESC 13-Mode“ (European Stationary Cycle) und 1,341 g pro kWh mechanischer Arbeit (1,0 g/bhp-hr) im „FTP Composite“-Zyklus (Federal Test Procedure, ein in den USA verwendeter Testzyklus). Im Vergleich dazu dürften nach Euro VI bei Motoren mit Fremdzündung (das sind auf jeden Fall die Ottomotoren) maximal 0,500 g pro kWh mechanische Arbeit im WHTC-Zyklus (World Harmonized Transient Cycle) emittiert werden. Selbstzünder (Dieselmotoren ohne externe Zündquelle wie z.B. einer Zündkerze) dürfen insgesamt sogar nur 0,160 g Kohlenwasserstoffe pro kWh mechanische Arbeit emittieren (also inklusive Methanemissionen). Fahrzeuge mit HPDI-Motor müssen jedoch ebenfalls die Grenzwerte nach Euro VI einhalten. Man könnte den Zündstrahl beim HPDI-Motor als einen Motor mit Fremdzündung betrachten, auch wenn es sich hier um keinen Ottomotor handelt. In diesem Fall muss er die Grenzwerte einhalten, die auch für Gasmotoren gelten. Es wurde daher vereinfachend angenommen, dass die CH₄- und N₂O-Emissionen des Lkw mit HPDI-Motor pro gefahrenen Kilometer auf dem Niveau der Lkw mit Gasmotor liegen.

Tabelle 27 zeigt den Kraftstoffverbrauch und die Nicht-CO₂-Treibhausgasemissionen der Lkw.
Tabelle 27: Kraftstoffverbrauch und Nicht-CO$_2$-Treibhausgasemissionen der Lkw

<table>
<thead>
<tr>
<th>Einheit</th>
<th>Dieselmotor Ottozyklus (Gasmotor)</th>
<th>Diesel-Zyklus (HPDI-CNG)</th>
<th>Diesel-Zyklus (HPDI-LNG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dieselverbrauch</td>
<td>l Diesel / (100 km) 31,0</td>
<td></td>
<td>1,32</td>
</tr>
<tr>
<td>kWh/km</td>
<td>3,09</td>
<td></td>
<td>0,16</td>
</tr>
<tr>
<td>MJ/km</td>
<td>11,1</td>
<td></td>
<td>0,57</td>
</tr>
<tr>
<td>Erdgasverbrauch</td>
<td>kg Erdgas / (100 km) 28,0</td>
<td></td>
<td>21,89</td>
</tr>
<tr>
<td>kWh/km</td>
<td>3,83</td>
<td></td>
<td>2,99</td>
</tr>
<tr>
<td>MJ/km</td>
<td>13,8</td>
<td></td>
<td>10,77</td>
</tr>
<tr>
<td>Emissionen</td>
<td>g CO$_2$/km 814</td>
<td>758-788</td>
<td>635-658</td>
</tr>
<tr>
<td>g CH$_4$/km</td>
<td>0,022</td>
<td>0,766</td>
<td>0,766</td>
</tr>
<tr>
<td>g /N$_2$O/km</td>
<td>0,068</td>
<td>0,077</td>
<td>0,077</td>
</tr>
</tbody>
</table>

Die CO$_2$-Emissionen hängen vom Kohlenstoffgehalt der eingesetzten Kraftstoffe ab. Bei Erdgas gibt es geringfügige Unterschiede zwischen dem Erdgas aus verschiedenen Herkunftsregionen.

2.4 Well-to-Wheel

2.4.1 Energieeinsatz und Treibhausgasemissionen

Abbildung 14 zeigt den Energieeinsatz „Well-to-Wheel“ für Lkw mit konventionellem Dieselmotor, mit Gasmotor und mit HPDI-Motor, aufgeteilt in die einzelnen Prozessschritte.
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Vergleichende Energie-, THG- und Kostenanalyse WtT und WtW

Abbildung 14: Energieeinsatz „Well-to-Wheel“, aufgeteilt in einzelne Prozessschritte

Abbildung 15: Energieeinsatz „Well-to-Wheel“, aufgeteilt in fossile, nukleare und erneuerbare Primärenergie

Abbildung 16: Spezifischer Energieeinsatz WtT und WtW in Relation zu Diesel

Abbildung 17 zeigt die Treibhausgasemissionen „Well-to-Wheel“ für Lkw mit konventionellem Dieselmotor, mit Gasmotor und mit HPDI-Motor, aufgeteilt in die einzelnen Prozessschritte.

In Abbildung 18 sind die spezifischen Treibhausgasemissionen für die untersuchten LNG- und CNG-Pfade relativ zu Diesel dargestellt.
Abbildung 18: Spezifische Treibhausgasemissionen WtT und WtW in Relation zu Diesel

2.4.2 Kosten

Unter den in dieser Studie getroffenen Annahmen für die Preise von Erdgas und Rohöl weisen alle LNG- und CNG-Lkw niedrigere Kraftstoffkosten auf als Lkw mit konventionellem Dieselmotor. Niedrigere Rohölpreise und/oder höhere Preise für Erdgas können das Ergebnis erheblich verändern. Die Preise für Dieselkraftstoff sind sehr großen Schwankungen unterworfen (siehe Kraftstoffkosten in Kapitel 2.2.8).

Abbildung 20: Kraftstoffkosten „Well-to-Wheel“ (Verlängerung der Steuerermäßigung von Erdgas als Kraftstoff über das Jahr 2018 hinaus)

Bleibt die derzeitige Steuerermäßigung auf Erdgas als Kraftstoff auch im Jahr 2020 bestehen, ergeben sich für CNG und LNG im Vergleich zu Dieselkraftstoff aus Rohöl um etwa 35% niedrigere spezifische Kraftstoffkosten im Fall der Lkw mit Gasmotor. Bei Lkw mit HPDI-Motor ergeben sich sogar um etwa 45% niedrigere Kraftstoffkosten.

Zusätzlich zur Darstellung der absoluten Kraftstoffkosten werden in Abbildung 21 die Kraftstoffkosten „Well-to-Wheel“ für die verschiedenen LNG- und CNG-Pfade relativ zum Diesel-Benchmark dargestellt.
Abbildung 21: Kraftstoffkosten (km-spezifisch) in Relation zu Diesel – Rohöl- und Dieselpreise nach [EWI et al. 2014]

In einer Sensitivitätsbetrachtung wurde dieselbe Berechnung für Rohöl- und Dieselpreise auf dem Niveau der ersten Jahreshälfte 2016 mit ansonsten unveränderten Annahmen durchgeführt und in Abbildung 22 dargestellt.
Abbildung 22: Kraftstoffkosten (km-spezifisch) in Relation zu Diesel – Rohöl- und Dieselpreis 2016 (Sensitivitätsbetrachtung)
3 POTENZIELLE AUSWIRKUNGEN VON AUS DEN USA IMPORTIERTEM SHALE GAS

3.1 Die Förderung von Shale Gas in den USA

3.1.1 Förderstatistiken von US Shale Gas

Das typische Förderprofil von gefrackten Bohrungen zeigt bereits zu Beginn den maximalen Förderbeitrag, die sog. „Initiale Produktionsrate”. Aufgrund des schnellen Druckabfalls lässt die Förderrate nach, wenn dies nicht durch „refrack“-Maßnahmen

Abbildung 23: Monatliche Gasförderung im Fayetteville Shale (Arkansas) [Zittel 2016, S. 198-200]
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Potenzielle Auswirkungen von aus den USA importiertem Shale Gas

Abbildung 24: Monatliche Anzahl der aktiven Fördersonden und spezifischer Ertrag je Sonde [Zittel 2016, S. 198-200]

3.1.2 Förderszenarien der künftigen Entwicklung

Die US-EIA geht von einem kumulierten Fördervolumen zwischen 2014 und 2040 von 17.000 Mrd. m³ Schiefergas, 740 Mrd. m³ Kohleflözgas und 9.000 Mrd. m³ an konventionellem Erdgas, also insgesamt von fast 27.000 Mrd. m³ aus.

Demgegenüber betrugen die nachgewiesenen Reserven Ende 2014: Schiefergas 5.651 Mrd. m³, Kohleflözgas 440 Mrd. m³ und konventionelles Erdgas inkl. Tight Gas 4.324 Mrd. m³. Damit die Fördererwartung der US-EIA sich erfüllte, müssten sich die Erdgasreserven innerhalb der kommenden 24 Jahre etwa verdreißig bis vervierfachen.

Abbildung 26: Erdgasförderung USA und zwei Szenarien zur künftigen Entwicklung: Starke Ausweitung der Förderung um 50% bis zum Jahr 2040 [AEO 2016] oder Halbierung der Förderung bis 2040 (LBST / [Hughes 2015])

3.2 Methanemissionen von US Shale Gas

3.2.1 Literatur

Die wesentliche Literatur zu Methanemissionen der Öl- und Gasindustrie wurde bereits im Kapitel 2.2.7 besprochen. An dieser Stelle wird ein kurzer Überblick über neuere Literaturzitate gegeben.

Emissionsflüsse von 9.000 - 38.000 l Methan pro Tag nachweisen. An 19 Stellen des Straßennetzes konnten sie lokale Methankonzentrationen im explosionsfähigen Bereich von bis zu 500.000 ppm (= 50%) dokumentieren.

In diesen Jahren zeigte sich zunehmend, dass sogenannte Massenbilanzierungen durch die Analyse der Methankonzentration in unterschiedlichen Höhen ein wirksames Mittel zur Quantifizierung von Emissionswerten bilden, auch wenn die absoluten Werte mit erheblicher Unsicherheit behaftet sind. Mit Flügen wird das Konzentrationsgefälle im Untersuchungsgebiet ermittelt. Mittels dynamischer Simulationsrechnungen wird aus diesen Daten die Stärke des Methanquellflusses ermittelt. In einem weiteren Schritt werden bekannte Emittenten (Landwirtschaft, Müllhalden, natürliche Emissionen, etc.) ermittelt und subtrahiert. Die verbleibenden Emissionen werden der Öl- und Gasindustrie zugerechnet. Naturgemäß ist diese Methode zwar ungenau. Sie liefert aber vor allem dort brauchbare Aussagen, wo die konkurrierenden Emittenten gut bekannt sind oder wo eindeutig ist, dass die Aktivitäten der Öl- und Gasindustrie regional die dominierende Emissionsquelle darstellen.

In Tabelle 28 und Abbildung 28 sind die Ergebnisse einiger derartiger Analysen über Shale Gas Formationen zusammengestellt.
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Potenzielle Auswirkungen von aus den USA importiertem Shale Gas

Tabelle 28: CH₄-Emissionen aus Shale Gas Fördergebieten

<table>
<thead>
<tr>
<th>Region</th>
<th>Jahr</th>
<th>t/h</th>
<th>% der Produktion</th>
<th>Literaturquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uinta Basin, Utah</td>
<td>2012</td>
<td>60</td>
<td>6,2-11,7</td>
<td>[Cires/NOAA 2013]</td>
</tr>
<tr>
<td>Denver-Jules, Colorado</td>
<td>2008</td>
<td>16</td>
<td></td>
<td>[NOAA 2016]</td>
</tr>
<tr>
<td>Denver-Jules, Colorado</td>
<td>2012</td>
<td>21</td>
<td>2,6-5,6</td>
<td>[Petron et al. 2014]</td>
</tr>
<tr>
<td>Haynesville, Arkansas / Texas</td>
<td>2013</td>
<td>89</td>
<td>1,0-2,1</td>
<td>[NOAA 2016]</td>
</tr>
<tr>
<td>Barnett, Texas</td>
<td>2013</td>
<td>66</td>
<td>~1,5</td>
<td>[NOAA 2016]</td>
</tr>
<tr>
<td>Fayetteville, Louisiana</td>
<td>2013</td>
<td>43</td>
<td>1,0-2,8</td>
<td>[Peischl et al. 2015]</td>
</tr>
<tr>
<td>Marcellus, Pennsylvania</td>
<td>2013</td>
<td>16</td>
<td>0,18-0,41</td>
<td>[Brownstein 2015]</td>
</tr>
<tr>
<td>Bakken, North Dakota</td>
<td>2014</td>
<td>31</td>
<td>4,2-8,4</td>
<td>[Peischl et al. 2016]</td>
</tr>
<tr>
<td>Los Angeles Basin, Kalifornien</td>
<td>2012</td>
<td>17</td>
<td></td>
<td>[Peischl et al. 2015]</td>
</tr>
<tr>
<td>Western Arkoma, Arkansas</td>
<td>2013</td>
<td>33</td>
<td>6-20</td>
<td>[Peischl et al. 2015]</td>
</tr>
</tbody>
</table>

Abbildung 28: Methanemissionen anhand von Flugzeugmessungen und Rückrechnung auf die Quellstärke (LBST auf Basis [NOAA 2016], [Peischl et al. 2015])

Das Problem dieser Messergebnisse der Massenbilanzierung über Flugzeugmessungen ist, dass sie alle auf stichprobenartigen mehrstündigen Messungen beruhen. Der Fehler einer Hochrechnung auf spezifische Monats- oder Jahreskennwerte kann hierbei durchaus 50% und mehr betragen. Daher sollten diese Ergebnisse als Hinweise auf erhöhte Werte...
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr

Potenzielle Auswirkungen von aus den USA importiertem Shale Gas
dienen, die deutlich über 1% liegen und möglicherweise bis 11% betragen können. Sie sind jedoch unzureichend für eine belastbare Quantifizierung der Emissionen. Erst eine bessere statistische Datenbasis würde helfen, diese Werte besser einzугrenzen.

3.2.2 Eigene Analysen

In Kapitel 2.2.7 wurde eine eigene Analyse der GHG-Emissionen aus der Produktions- und Transportkette von der Schiefergasförderung bis zur Verflüssigung und Anlandung in Europa durchgerechnet. Die Berechnungsbasis bildeten wegen der oben genannten Schwierigkeiten der Quantifizierung die dort genannten Studien. Dabei wurden Werte verwendet, die eher im unteren Bereich der hier genannten Studien liegen.

3.3 Weitere Umweltauswirkungen der Shale Gas Förderung in den USA

Wenn auch Umwetaspekte in dieser kurzen Zusammenstellung nicht im Fokus stehen, so soll doch darauf hingewiesen werden, dass allein in Norddakota im Mittel jede Förderbohrung einen behördlich registrierten Störfall aufweist.

3.4 Ökonomische Aspekte

3.4.1 Bohrkosten und Abschätzung der Gesamtkosten

Während die Firmen darauf hinweisen, dass im zeitlichen Verlauf die Kosten sinken würden, lässt sich das in der Statistik so nicht nachvollziehen. Beispielsweise sind lt. Chesapeake zwar die Bohrkosten im Eagle Ford Shale von 6,9 Mio. USD im ersten Quartal...
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Potenzielle Auswirkungen von aus den USA importiertem Shale Gas

Abbildung 30: Entwicklung der durchschnittlichen Bohrkosten in den USA und des Gaspreis (1 USD/1.000 scf / ~3,53 €ct/m³)

Der notwendige kostendeckende Gaspreis, der von den Firmen vermittelt wird, streut enorm. Insbesondere scheint mit jeder Gaspreissenkung auch eine Kostensenkung einherzugehen, wenn man den Aussagen der Firmen Glauben schenkt. Tatsächlich ist der erzielbare Gaspreis jedoch seit etwa 2010 im Mittel nicht mehr kostendeckend und die

In branchenüblichen Abschätzungen berücksichtigt man zu den reinen Bohrkosten die sonstigen Lebenszykluskosten überschlägig über die Verdoppelung der Bohrkosten [Powers 2012]. Die so geschätzten Gesamtkosten von Bohrungen im Fayetteville Shale betragen bei Bohrkosten um die 2,5-2,8 Mio. USD also etwa 5,0-5,6 Mio. USD [Baihly et al. 2011]. Dieser Betrag muss zum durchschnittlichen Ertrag in Beziehung gesetzt werden. Aus allen im Fayetteville Shale bisher abgeteuften 5.500 Bohrungen mit einer Förderdauer von teilweise mehr als 10 Jahren zeichnet sich bei Extrapolation der Zeitreihen ein durchschnittlicher Ertrag von 30-40 Mio. m³ je Bohrung ab [Zittel 2016], wobei die einzelnen Werte extrem streuen und bis zu 100 Mio. m³ betragen können. Abbildung 30 kann man einen Gaspreis der letzten Jahre von ca. 2-3 USD/1.000 scf (wellhead price) entnehmen, das sind umgerechnet 7-10 ct/m³.

Bei einem mittleren Ertrag von 40 Mio. m³ summieren sich die Einnahmen aus dem Gasverkauf auf ca. 2,8-4 Mio. USD pro Bohrung. Das liegt deutlich unter den Lebenszykluskosten der Bohrung.

Natürlich liegen die Erträge in den sogenannten „Sweet spots“, also in den ertragsstarken Bohrungen des Shales deutlich höher, dem stehen jedoch viele Bohrungen mit unterdurchschnittlichem Ertrag gegenüber, die mitsubventioniert werden müssen.

Tabelle 29 gibt eine Literaturzusammenstellung, ab welchem Gaspreis in den einzelnen Shales die Gasförderung für die Firmen rentabel wird. Dieser Preis hängt vorrangig von dem erwarteten Gasertrag der Bohrungen ab, weshalb auch der zugrunde gelegte kumulierte Gasertrag der Bohrung angegeben wurde. In der Vergangenheit haben sich die Aussagen von Arthur Berman bzgl. der Ergiebigkeit der einzelnen Fördersonden am belastbarsten gezeigt. Hierbei muss berücksichtigt werden, dass es sich bei dieser Analyse immer um gemittelte Werte handelt, wohingegen die Presse und auch die Firmen oft die Daten besonders erfolgreicher Bohrungen in Sweet Spots hervorheben. Tatsächlich stimmt die eigene empirische Analyse mit ca. 40 Mio. m³ kumulierter Gasförderung im Fayetteville Shale recht gut mit der Abschätzung von Arthur Berman überein.
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Potenzielle Auswirkungen von aus den USA importiertem Shale Gas

3.4.2 Ökonomische Situation der Förderfirmen

Die Situation der in der Schiefergas- und Ölförderung in den USA aktiven Firmen ist desaströs [Berman 2016]. Beispielhaft soll dies an der Firma Chesapeake diskutiert werden, die als eine der erfolgreichsten und erfahrensten in diesem Geschäft gilt.

Tabelle 29: Abschätzung des Break-Even-Gaspreises, über dem die Gasförderung in unterschiedlichen Shales für die Firmen rentabel wird

<table>
<thead>
<tr>
<th>Gas Shale</th>
<th>Kumulierter Gasertrag [Mio. m³]</th>
<th>Break-Even-Gaspreis [USD-ct/m³]</th>
<th>Literaturquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marcellus</td>
<td>230</td>
<td>10,4-11,6</td>
<td>[Duman 2012]</td>
</tr>
<tr>
<td>- Anadarko</td>
<td>175</td>
<td>15,0</td>
<td>[Berman 2016]</td>
</tr>
<tr>
<td>- Cabot</td>
<td>265</td>
<td>12,1</td>
<td>[Berman 2016]</td>
</tr>
<tr>
<td>- Chesapeake</td>
<td>204</td>
<td>13,8</td>
<td>[Berman 2016]</td>
</tr>
<tr>
<td>- Chevron</td>
<td>140</td>
<td>17,3</td>
<td>[Berman 2016]</td>
</tr>
<tr>
<td>- EQT</td>
<td>266</td>
<td>12,1</td>
<td>[Berman 2016]</td>
</tr>
<tr>
<td>- Range</td>
<td>109</td>
<td>20,3</td>
<td>[Berman 2016]</td>
</tr>
<tr>
<td>- Shell</td>
<td>90</td>
<td>32,2</td>
<td>[Berman 2016]</td>
</tr>
<tr>
<td>- Southwestern</td>
<td>165</td>
<td>20,5</td>
<td>[Berman 2016]</td>
</tr>
<tr>
<td>- Talisman</td>
<td>122</td>
<td>18,8</td>
<td>[Berman 2016]</td>
</tr>
<tr>
<td>Barnett</td>
<td>80</td>
<td>13,1</td>
<td>[Baihly et al. 2011]</td>
</tr>
<tr>
<td>Barnett</td>
<td>38</td>
<td>30,9</td>
<td>[Berman et al. 2011]</td>
</tr>
<tr>
<td>Fayetteville</td>
<td>100</td>
<td>11,3</td>
<td>[Baihly et al. 2011]</td>
</tr>
<tr>
<td>Fayetteville</td>
<td>70</td>
<td>13,1</td>
<td>[Baihly et al. 2011]</td>
</tr>
<tr>
<td>Fayetteville</td>
<td>38</td>
<td>28,2</td>
<td>[Berman et al. 2011]</td>
</tr>
<tr>
<td>Haynesville</td>
<td>130</td>
<td>24,6</td>
<td>[Baihly et al. 2011]</td>
</tr>
<tr>
<td>Haynesville</td>
<td>170</td>
<td>21,5</td>
<td>[Baihly et al. 2011]</td>
</tr>
<tr>
<td>Haynesville</td>
<td>115</td>
<td>24,5</td>
<td>[Berman et al. 2011]</td>
</tr>
<tr>
<td>Eagle Ford</td>
<td>107</td>
<td>22,0</td>
<td>[Baihly et al. 2011]</td>
</tr>
<tr>
<td>Woodford</td>
<td>70</td>
<td>26,0</td>
<td>[Baihly et al. 2011]</td>
</tr>
<tr>
<td>Woodford</td>
<td>96</td>
<td>22,0</td>
<td>[Baihly et al. 2011]</td>
</tr>
</tbody>
</table>

Aber auch viele andere Firmen erwirtschafteten in den vergangenen Jahren ein Minus: Kumuliert über den Zeitraum 2009-2015 belief sich der Verlust bei Apache auf 17,2 Mrd. USD, bei Devon auf 11,7 Mrd. USD, bei Anadarko auf 6,8 Mrd. USD und bei Encana auf 1 Mrd. USD, um die wichtigsten vor allem im Fracking aktiven Firmen in den USA zu nennen.

Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Potenzielle Auswirkungen von aus den USA importiertem Shale Gas

Abbildung 31: Gewinne und Verluste von 31 weltweit aktiven Ölfirmen in 2015, deren Anteil an der weltweiten Öl- und Gasförderung gemeinsam etwa 30% beträgt

3.5 Potenzielle Auswirkungen auf den deutschen Erdgasmarkt

3.5.1 Abschätzung für den Export verfügbarer Mengen und deren Kosten

Tabelle 30: Genehmigte und im Bau befindliche LNG-Exportterminals in den USA [FERC 2016a]

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Kapazität</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sabine, LA</td>
<td>59,4 Mio. m³/Tag</td>
<td>Genehmigt, im Bau</td>
</tr>
<tr>
<td>Hackberry, LA</td>
<td>59,4 Mio. m³/Tag</td>
<td>Genehmigt, im Bau</td>
</tr>
<tr>
<td>Freeport, TX</td>
<td>50,9 Mio. m³/Tag</td>
<td>Genehmigt, im Bau</td>
</tr>
<tr>
<td>Cove Point, MD</td>
<td>23,2 Mio. m³/Tag</td>
<td>Genehmigt, im Bau</td>
</tr>
<tr>
<td>Corpus-Christi, TX</td>
<td>60,6 Mio. m³/Tag</td>
<td>Genehmigt, im Bau</td>
</tr>
<tr>
<td>Sabine Pass, LA</td>
<td>39,6 Mio. m³/Tag</td>
<td>Genehmigt, im Bau</td>
</tr>
<tr>
<td>Summe</td>
<td>293,1 Mio. m³/Tag</td>
<td>= 107 Mrd. m³/a</td>
</tr>
</tbody>
</table>

Darüber hinaus gibt es noch jeweils drei weitere genehmigte, jedoch noch nicht im Bau befindliche Exportterminals in den USA und in Kanada.

Weitere 19 potenzielle Exportterminals wurden vorgeschlagen. Sieben davon mit einer geplanten Gesamtkapazität von 102 Mrd. m³/a befinden sich in der Antragsphase. Eine Entscheidung ist noch nicht getroffen [FERC 2016b]. Es kann davon ausgegangen werden, dass diese Terminals innerhalb der kommenden zehn Jahre nicht in Betrieb genommen werden können, ungeachtet eines noch ausstehenden Genehmigungsbescheides.

Ebenfalls wird im [AEO 2016] unterstellt, dass sich der Erdgaspreis in den USA weitgehend vom Ölpreis entkoppeln wird: Während beim Ölpreis eine Vervierfachung erwartet wird, wird der Erdgaspreis nur leicht ansteigen und langfristig mit ca. 5 USD/1.000 scf (17,7 €ct/m³) auf dem Niveau von 2010 und 2013 verharren. Begründet wird dies damit, dass die Förderkosten aufgrund technologischer Entwicklungen gegenüber heute deutlich sinken werden.
3.5.2 Kritische Bemerkungen zum Annual Energy Outlook 2016

Bei dieser Betrachtung bleibt ebenfalls vollkommen außen vor, dass viele Shales bereits heute Erschöpfungszeichen der hochwertigen Areale (Sweet Spots) verzeichnen und dass bei so stark steigender Nachfrage natürlich auch die Arbeits- und Materialkosten entsprechend steigen und die Förderkosten anheben würden. Die kurze Analyse der Jahresberichte von Chesapeake zeigt ja, dass über die vergangenen 15 Jahre die spezifischen Ausgaben für die Bohrungen, die den Hauptanteil der Kosten ausmachen, unabhängig davon ob viel oder wenig gebohrt wurde, um den Faktor sieben angestiegen sind. Es bleibt schwer vorstellbar, dass die erdgashöfigen Shales in den USA ihre Produktivität über die kommenden Jahrzehnte beibehalten werden. Bereits heute zeigt
sich ja das Nachlassen der durchschnittlichen Ergiebigkeit je Bohrung. Im Resultat müsste die Aktivität vervielfacht werden, um auch den regionalen Förderertrag ausweiten zu können. Selbst wenn man dies für möglich halten wollte, so wäre dies unmöglich ohne einen parallelen Preisanstieg, der den deutlich steigenden Kosten entspräche.

4 CNG-TANKMONTAGE HINTER DEM FAHRERHAUS

4.1 Grundsätzliche Einordnung

Abbildung 33: Einschätzung von Daimler zur Integration von CNG-Speichermodulen hinter dem Fahrerhaus [Schuckert 2014]
Für Europa gilt: Die gegenwärtig einzige Möglichkeit Kraftstofftanks in die Zugmaschine zu integrieren ist seitlich im Fahrgestell, so wie die heutigen Dieseltanks.

Die meisten bisherigen Analysen zur Integration von CNG-Tanks gehen fälschlicherweise noch von Tanksystemen mit Typ I, Typ II oder Typ III Behältern aus, also Systemen mit vergleichsweise schweren Einzelbehältern oder begrenzter Lebensdauer (Typ III). Die Innovation liegt aber gerade im Einsatz von Typ IV Tanks. Da der Diesel-Lkw nicht wegen des Gewichtsvorteils ersetzt werden soll, ist ein Diesel- versus Erdgas-Tanksystemvergleich nicht zielführend. Es geht vornehmlich um THG-Emissionsreduktion und Fuel Switch. Das Tanksystemgewicht für CNG (Typ IV Tanks) und LNG ist in etwa gleich d.h. für die gleiche Masse Erdgas wiegt das Tanksystem ungefähr gleich viel. Siehe dazu auch den Vergleich der CNG / LNG Tanktechnologie in Kapitel 1.2.2.3.

4.2 Beispiele aus der Praxis

Ein Quantum CNG-Speichermodul für 180 GDE (Gallone Diesel Equivalent) bei 25 MPa Fülldruck hat folgende Abmessungen:

Breite: 2,264 m / Tiefe: 1,005 m / Höhe: 2,647 m

Die Abmessungen sind auch in Abbildung 34 dargestellt.
Abbildung 34: Abmessungen des Quantum 180 Gen 2 Back Of Cab Fuel Storage Module [Quantum 2015]

Das Modul muss mit einem Abstand von etwa 0,13 m hinter dem Fahrerhaus installiert werden, wie in Abbildung 35 dargestellt:
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
CNG-Tankmontage hinter dem Fahrerhaus

Abbildung 35: Generelle Fahrzeuganforderungen beim Einsatz von Quantum Fuel Storage Modules (FSM) in den USA [Quantum 2015]

Dieses in den USA eingesetzte Speichermodul (FSM) zeigt, dass Reichweiten von schweren gasmotorischen Nutzfahrzeugen von bis zu 1.750 km pro Betankung möglich werden.

4.3 Zulassungsfähigkeit in Europa

Bei einem Sattelauflieger mit einer maximalen Länge von 13,62 m ergibt sich vom Zugzapfen in Fahrtrichtung ein Überhangradius von 2,04 m, also ein zu berücksichtigende Projektionslänge des Aufliegers von 12,00 + 2,04 = 14,04 m. Es bleiben also bei einer Normfahrerhauslänge von 2,35 m bzgl. der zulässigen Gesamtlänge nur 16,50 – 14,04 – 2,35 = 0,11 m Zwischenraum übrig.

Selbst wenn nach der neuverfassten Richtlinie 2015/719/EU vom 29. APR 2015 die für die aerodynamische Verbesserung der Lkw erlaubten Verlängerungen auf ein Speichermodul hinter dem Fahrerhaus übertragbar wären, würde diese Verlängerung vermutlich nicht ausreichen, um ein Speichermodul von 1 m Tiefe (also 1 m in Fahrtrichtung hinter dem Fahrerhaus plus Lichtraumabstand von ca. 0,1 m) zu integrieren.

Lösungsansatz

Beim Einsatz von langen Zugmaschinen, ursprünglich vorgesehen für kurze Sattelauflieger wie sie z.B. im Baustellen- oder Spezialtransportbetrieb Einsatz finden, wäre die
Unterbringung von CNG-Speichermodulen relativ einfach möglich. Dabei müsste die Länge der Sattelauflieger auf z.B. 12,2 m (40’) begrenzt werden, was dazu führen würde, dass bzgl. der zulässigen Gesamtlänge dann 16,50 - (12,2 + (2,04 - 1,55)) - 2,35 = 1,5 m Zwischenraum übrig blieben. Dies würde den Einbau eines 1,1 m tiefen Speichermoduls ermöglichen, ohne das Regelwerk zu verändern, würde aber andererseits nur noch den Transport von Normcontainern von 40’ zulassen. Beim Transport von 2 Containern à 20’ würde die Reserve von ~ 0,4 m (1,5 m - 1,1 m) vermutlich ganz aufgebraucht. (Dies wäre ggf. noch mit Logistikexperten zu diskutieren.)

Im Unterschied zu Deutschland / Europa sind laut US-Regelwerk Trailerlängen von 53 Fuß (16,15 m) zulässig und bei gleicher Zuladung darf die Zugmaschine verlängert werden (es ist für eine Dreiachselzugmaschine mit Zweiachsauflieger eine maximal zulässige Gesamtlänge des Zuges von bis zu 23 Metern erlaubt (23 – 16,15 = 6,85 m, also fast 7 m mehr als in Europa) bei einem zulässigen Gesamtgewicht von 36,3 t (USA) und 39,9 t (Kanada)), wodurch sich das CNG-Flaschenbündel ohne Regelwerksanpassungen unterbringen lässt.

Um eine mit Diesel oder LNG vergleichbare Reichweite um oder etwas über 1.000 km erzielen zu können, wurde die Richtlinie 96/53/EU auf die Zulassungsfähigkeit einer Verlängerung des Fahrerhauslichtraumprofils in Fahrrichtung nach hinten (wie bei der Unterbringung aerodynamischer Verbesserungen) zur Unterbringung eines CNG-Speichermoduls in Deutschland / Europa untersucht.

Hierzu wurden zusammen mit dem Auftraggeber Gespräche mit Ansprechpartnern bei Nutzfahrzeugherstellern durchgeführt.

Von MAN war folgende Einschätzung bzgl. der regulatorischen Situation hinsichtlich der Verlängerung des Lkw-Fahrerhauses zu erlangen:

Fahrerhaus

Nachweis erforderlich:

- Verbesserte Aerodynamik (Kraftstoffverbrauch)
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
CNG-Tankmontage hinter dem Fahrerhaus

- Verbesserte Sicht
- Verbesserte Sicherheit und Komfort des Fahrers
- Sicherheit anderer Verkehrsteilnehmer

Keine Längenbegrenzung nach vorne beschrieben!

Zeitschiene ab 26. MAI 2015:
- 2 Jahre: Prüfphase einer Regelwerksanpassung
- 3 Jahre: Leadtime nach Umsetzung Typprüfungsvorschriften

Anwendung ab ca. 2020/2022

Es war nicht klar, ob auch Bedürfnisse zur Integration alternativer Kraftstoffe als Argument zur Verlängerung des Fahrerhauses im Rahmen der Diskussion in der Prüfphase noch eingebracht werden können. MAN teilte mit, dass interne Analysen verfügbarer Einbauräume im Fahrgestell der Zugmaschine von theoretisch etwa 1,5 m³ zeigen, wovon realistischer Weise (u.a. auch unter Nichtmitnahme eines Ersatzrades) ein Einbauraum von knapp 1 m³ bleibt. Diese Einschätzung deckt sich mit den unter 1.2.2.1 identifizierten verfügbaren Tanks einer Länge von ca. 2 m bei einem Durchmesser von 650 mm. Diese Tanks haben knapp über 0,5 m³ geometrisches Volumen. Je ein Tank könnte links und rechts eingebaut werden. Mit zwei dieser CNG-Tanks lässt sich nicht ganz die Reichweite wie mit einem LNG-Tank vergleichbaren Volumens erzielen: 580 km versus 700-750 km.

Bzgl. der zulässigen Massenerhöhung des Lkw wurden von MAN folgende Aussagen gemacht:

Das Regelwerk erlaubt die „Optionale Erhöhung des Gesamtgewichts aufgrund Mehrgewicht alternativer Kraftstoffe (max. 1 t), ohne Erhöhung der Nutzlast“.

Alternative Kraftstoffe

- Strom in allen Arten von Elektrofahrzeugen
- Wasserstoff
- Erdgas: CNG und LNG
- Flüssiggas: LPG
- Mechanische Energie aus bordeigenen Speichern / Quellen, einschließlich Abwärme

⇒ Technologieneutralität

Anwendung ab 07. MAI 2017

Daimler sieht eine zusätzliche Einbaulänge auf Basis der Richtlinie 2015/719 von 0,6 - 0,7 m im Rahmen von aerodynamischen Anpassungen als umsetzbar an. Der BO-Kraftkreis gemäß §32d StVZO muss jedoch immer gewährleistet sein.

Auf Basis dieser Informationen könnte man folgende Integrationsansätze andenken:
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
CNG-Tankmontage hinter dem Fahrerhaus

Tabelle 31: Einbaualternativen für CNG-Speichermodule mit 20 MPa

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Im Chassis beidseitig</td>
<td>2,032</td>
<td>658</td>
<td>2</td>
<td>158 [142 nutzbar = 198 lₜ]</td>
<td>629</td>
<td>515</td>
<td>598</td>
<td>2 x 165 + 4 x 158 = 646</td>
</tr>
<tr>
<td>B</td>
<td>In kleinem Modul [max. 700 mm]</td>
<td>2,044</td>
<td>546</td>
<td>4</td>
<td>250 [225 nutzbar = 313 lₜ]</td>
<td>993</td>
<td>814</td>
<td>945</td>
<td>4 x 79 + 4 x 62,6 = 566</td>
</tr>
<tr>
<td>C</td>
<td>In großem Modul [1,1 m]</td>
<td></td>
<td></td>
<td></td>
<td>380 [342 nutzbar = 475 lₜ]</td>
<td>1.507</td>
<td>1.236</td>
<td>1.435</td>
<td>1500</td>
</tr>
<tr>
<td>D</td>
<td>A+B</td>
<td></td>
<td></td>
<td></td>
<td>408 [367 nutzbar = 510 lₜ]</td>
<td>1.619</td>
<td>1.327</td>
<td>1.541</td>
<td>646 + 566 = 1212</td>
</tr>
<tr>
<td>E</td>
<td>A+C</td>
<td></td>
<td></td>
<td></td>
<td>538 [484 nutzbar = 673 lₜ]</td>
<td>2.136</td>
<td>1.751</td>
<td>2.033</td>
<td>646 + 1.500 = 2.146</td>
</tr>
<tr>
<td>D’</td>
<td>A+B’</td>
<td>2,032</td>
<td>658</td>
<td>2</td>
<td>142 nutzbar = 169 lₜ = 432 lₜ</td>
<td>1.371</td>
<td>1.124</td>
<td>1.305</td>
<td>1.070</td>
</tr>
</tbody>
</table>

Erkenntnisse aus der Diskussion mit Fahrzeugherstellern

- Aufgrund der Markterfordernisse bzw. der Kundenakzeptanz können nur Tanks im Fahrgestell integriert werden (Sattelzugmaschinen im europäischen Fernverkehr). Es wäre zulässig, Fahrzeuge mit einem kurzen Fahrerhaus und dahinterliegendem CNG-Druckflaschenpaket auszurüsten. Dies würde aber von den Kunden für die Fernverkehrsfahrzeuge nicht angenommen werden.
- Die Diskussionen mit Fahrzeugherstellern haben keine eindeutige Klärung bezüglich Anpassungsmöglichkeiten im Rahmen von RL 2015/719 erbracht.
- Daimler kann sich maximal einen zusätzlichen Einbauraum von 600 bis 700 mm z.B. hinter dem Fahrerhaus im Rahmen von aerodynamischen Anpassungen vorstellen.
Andere OEMs wollen die Anpassbarkeit im Rahmen von RL 2015/719 auf alternative Kraftstoffe ausweiten

4.4 Maßnahmen und Aufwände, um Zulassungsfähigkeit in Europa herzustellen

Da die Zuladung (Volumen bzw. Masse bzw. beides) heute essenziell für die Wirtschaftlichkeit von Lkw im Fernverkehr ist, stellt dieser Aspekt also eine Schlüsselbedingung dar.

Als wesentliche Maßnahme ist hier die Einwirkung auf die Anpassung der RL 2015/719 zu nennen, da darin sowohl die Thematik Fahrzeugverlängerung als auch das Thema Erhöhung des zulässigen Gesamtgewichts ohne Erhöhung der Nutzlast geregelt sind (siehe dazu auch Kapitel 4.3). Insbesondere betrifft dies die Fahrzeughersteller, daher sollten insbesondere diese hier aktiv werden, um die erforderlichen Regelwerksanpassungen in den bereits laufenden Implementierungsprozess zu integrieren.

Mit welchen Aufwänden und mit welchen Zeithorizonten zu rechnen ist, lässt sich am besten aus Abbildung 36 ablesen, in der die aktuelle Zeitplanung für die Umsetzung der RL 2015/719 dargestellt ist.

Abbildung 36: Richtlinie 96/53/EG idF (EU) 2015/719 – Zeitschiene denkbare Umsetzung der Richtlinie (LBST auf Basis [MAN 2015])

<table>
<thead>
<tr>
<th>RL tritt in Kraft (fix)</th>
<th>RL im nat. Recht verankert (fix)</th>
<th>Ende Prüfung (fix)</th>
<th>Techn. Regelwerk liegt vor (nicht fix)</th>
<th>Realistische Zulassung (nicht fix)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.05. 2015</td>
<td>07.05. 2017</td>
<td>27.05. 2017</td>
<td>2018/2019</td>
<td>2020/2021/2022</td>
</tr>
</tbody>
</table>

Zeitraum für Umsetzung der RL in nationales Recht

Umsetzungsphase

EU-KOM prüft techn. Anforderungen für Frontverlängerung

Prüfungsphase

Zeitraum, Ergebnisse der Prüfungsphase in das techn. Regelwerk (UN-Typgenehmigung in Genf) einarbeiten

3 Jahre lead time (fix)

Keine Fristen genannt

⇒ Unsicherheitsfaktor!
5 ANALYSE VON TANKSTELLEN MIT HOCHLEISTUNGSKOMPRESSOREN

Dieses Kapitel liefert eine realistische, faktenbasierte Aussage darüber, welcher technische Aufwand für die Errichtung einer CNG-Basisinfrastruktur zur Betankung von Lkw im Fernverkehr entsteht. Diese beinhaltet auch eine Abschätzung der dafür erforderlichen tankstellenspezifischen Gesamtkosten.

5.1 Übersicht Tankstellen-Systemintegratoren und Hersteller von Hochdruckkompessoren

5.1.1 Hersteller von Hochdruckkompessoren

Ariel

Die US-amerikanische Firma Ariel (https://www.arielcorp.com) aus Mount Vernon, Ohio, liefert Erdgaskolbenkompessoren, die je nach Saugdruck (0,03-1,36 MPa) Förderleistungen zwischen 200 und 2.000 Nm³/h bei Enddrücken von 31 MPa oder höher bereitstellen können bei elektrischen Anschlussleistungen zwischen 37 kW und 895 kW.

Aspro

Die argentinische Firma Aspro (http://www.asprognc.com) aus Los Troncos, Provinz Buenos Aires, Argentinien, liefert horizontal arbeitende Erdgaskolbenkompessoren, die mit Saugdrücken von 0,02 MPa bis 6 MPa arbeiten können und Lieferdrücke von 25 bis 30 MPa bereitstellen können bei Liefermengen von bis zu 2.500 Nm³/h bei Anschlussleistungen von bis zu 200 kW pro Kompressorstufe.

Atlas Copco

Die schwedische Firma Atlas Copco (www.atlascopco.com) aus Nacka bei Stockholm liefert Erdgaskompressoren mit Saugdrücken zwischen minimal 0,05 und 2,4 MPa und maximal 0,13 und 7 MPa und Liefermengen von zwischen 470 Nm³/h (@ 0,05 MPa Eingangsdruck) und 6.800 Nm³/h (@ 7 MPa Eingangsdruck). Lieferdrücke von bis zu 35 MPa sind in 3-5-stufigen Kompressorsystemen darstellbar.

Bauer

Die deutsche Firma Bauer Kompressoren (www.bauercomp.com) aus München liefert Erdgaskompressoren mit Saugdrücken zwischen minimal 0,07 MPa und maximal 3,8 MPa und einem maximalen Lieferduck von 34,5 MPa mit Lieferleistungen von bis zu 561 Nm³/h.

Broadwind Energy

zu 31 MPa bei Liefermengen zwischen 400 und 730 Nm³/h. Die elektrische Antriebsleistung liegt dabei zwischen 112 und 447 kW.

CompAir

Dresser Wayne Pignone

Die US-amerikanische Firma Dresser Wayne Pignone (www.wayne.com) mit Sitz in Austin, Texas und einem Standort in Florenz, Italien, (Pignone) liefert Erdgaskompressoren mit Saugdrücken von 0,01 bis 20 MPa und Liefervolumina zwischen 100 und 7.000 Nm³/h bei Abgabedrücken von bis zu 35 MPa. Die Antriebsleistungen liegen dabei zwischen 55 und 600 kW. Die Produktlinie, die CNG-Tankstellenbedarf abdeckt, firmiert unter Cubogas und umfasst die Dresser Wayne Pignone BVTN und AVTN Linien. Die größte Konfiguration mit 4BVTN-Kompressoren (also bei niedrigen Saugdrücken und großen Liefermengen) hat eine Aufstellfläche von ca. 2,5 m x 6,5 m bei einer maximalen Höhe von 4 m.

FTI

Die kanadische Firma FTI International Group Inc. (www.fuelingtech.com/) aus Vaughan, Ontario, Kanada, liefert Kompressoren, die mit Saugdrücken zwischen 0,414 und 6,2 MPa arbeiten und Liefermengen zwischen 350 und 2.500 Nm³/h bereitstellen bei Drücken von bis zu 35 MPa. Die elektrischen Antriebsleistungen liegen dabei bei zwischen 37 und 261 kW.

Galileo

Die argentinische Firma Galileo (www.galileoar.com) in Sáenz Peña, Partido de Tres de Febrero; Provinz Buenos Aires liefert u.a. standardisierte Kompressorprodukte, die weitestgehend Plug-and-Play-fähig sind:
Abbildung 37: Galileo Kompressorprodukte [Galileo 2014]

Diese Aggregate arbeiten mit Saugdrücken von 0,005 bis 6 MPa und Abgabedrücken von 25 MPa. Die Liefermengen der Kompressoren liegen zwischen 50 und 350 Nm³/h (NanoBox), 300 und 5.000 Nm³/h (MicroBox) und 300 und 500 Nm³/h (GigaBox). Die Antriebsleistungen liegen zwischen 22 und 45 kW (NanoBox), 75 und 400 kW (MicroBox) und 300 und 400 kW (GigaBox).

Jede NanoBox-Grundeinheit hat eine Aufstandsfläche von 2,36 m x 0,87 m und eine Höhe von 2,04 m. Die Kosten liegen bei etwa 250.000 USD.

Jede MicroBox-Grundeinheit hat eine Aufstandsfläche von 4,32 m x 2,43 m und eine Höhe von 2,93 m. Die Kosten liegen bei etwa 500.000 USD.

Sowohl die NanoBox als auch die MicroBox kommen mit einem eingebauten CNG-Speicher von ca. 1.000 l, können aber auch mit einem 3.000 l Speicher ausgestattet werden, um eine bessere Vergleichsmässigung der Verdichtung zu gewährleisten.

Die Kosten pro Dispenser liegen bei Galileo bei etwa 50.000 USD.

Galileo realisiert jedoch auch custom-designed Großkompressoranlagen mit Abgabekapazitäten bis zu 25.000 Nm³/h (siehe EMT Madrid, Spanien, oder Muara Tawar, Bekasi, West Java, Indonesien). Für eine Anlagenkonfiguration wie bei der EMT in Madrid mit neun Kompressoreinheiten vom Typ Micro-Box werden etwa 5 m x 30 m Aufstellfläche benötigt.

Hofer

Die deutsche Firma Hofer (www.andreas-hofer.de) in Mühlheim an der Ruhr liefert Kolbenkompressoren mit hydraulischem Antrieb sowie Membrankompressoren.
Beide Kompressortypen gibt es für Enddrücke von bis zu 100 MPa und Abgabemengen von 300 bis 500 Nm³/h. Die Saugdrücke liegen je nach Kompressortyp zwischen 0,1 und 5 MPa (Kolben) bzw. zwischen 1,4 und 1,8 MPa (Membran).

IdroMeccanica

Die italienische Firma IdroMeccanica (http://www.idromeccanica.it) liefert hydraulische Kolbenkompressoren für Erdgas und Wasserstoff für Eingangsdrück von 0,4 bis 25 MPa und Lieferdruck von bis zu 45 MPa.

IMW

Die kanadische Firma IMW Clean CNG (www.imw.ca) aus Chilliwack, BC, Kanada, bietet Doppelkompressorsysteme für Lieferdrücke von 25 bzw. 31 MPa an, die Saugdrücke von 0,16 bis 4,8 MPa bzw. von 0,03 bis 1 MPa haben bei Liefermengen von 567 bis 2,442 Nm³/h bzw. von 390 bis 956 Nm³/h. Die elektrischen Antriebsleistungen liegen bei 187 bzw. 224 kW. Die Aufstellfläche liegt bei 4 m x 2,4 m bei einer Containerhöhe von 3 m. Die Massen liegen bei 6,23 bzw. 7,26 t.

J.A. Becker & Söhne

Die deutsche Firma J.A. Becker & Söhne (http://kompressoren.jabecker.de) aus Neckarsulm liefert Erdgaskompressoren mit Saugdrücken von 0,03 MPa bis 0,09 MPa und einem maximalen Lieferdruck von 30 MPa mit Lieferleistungen von 7,8 Nm³/h bis 160 Nm³/h.

Lenhardt & Wagner

Die deutsche Firma Lenhardt & Wagner (www.lw-compressors.com) aus Hüttenfeld bei Köln liefert Erdgaskompressoren mit Saugdrücken zwischen minimal atmosphärisch und maximal 15 MPa und einem maximalen Lieferdruck von 42 MPa mit Lieferleistungen von 6 Nm³/h bis 700 Nm³/h.

LMF

Die österreichische Leobersdorfer Maschinenfabrik GmbH & Co. KG (www.lmf.at) aus Leobersdorf liefert Kompressoren mit Saugdrücken von 0,1 bis 2 MPa und einem Abgabedruck von 25,1 MPa (wobei auf Anfrage auch höhere Drücke möglich sind). Es sind Kompressoren mit Liefermengen von 150 bis 250 Nm³/h, von 273 bis 760 Nm³/h und von 245 bis 1.460 Nm³/h erhältlich. Für Saugdrücke von 0,2 bis 5,1 MPa gibt es Kompressorsysteme mit Liefermengen bis zu 6.000 Nm³/h mit Antriebsleistungen zwischen 40 und 600 kW.

McKenzie

Die US-amerikanische Firma McKenzie aus Pittsburgh, USA (www.mckenziecorp.com) liefert Ingersoll Rand CNG-Kompressor-Pakete, deren größtes einen Saugdruck von 0,14 MPa und einen Abgabedruck von 35 MPa bei einer Liefermenge von knapp
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr

Analyse von Tankstellen mit Hochleistungskompressoren

200 Nm³/h hat. Die Containergröße beträgt 3,15 m x 2,03 m x 1,98 m bei einer Masse von 5,65 t.

Sauer
Die deutsche Firma J.P. Sauer & Sohn (http://www.sauercompressors.com/de) liefert Booster-Kompressoren für CNG-Anwendungen für Enddrücke von 0,1 bis 35 MPa und Abgabemengen von bis zu 1.400 Nm³/h.

sera
Die deutsche Firma sera GmbH (http://www.sera-web.com/de) liefert Metallmembran-Kompressoren für Ansaugdrücke von 0,1 MPa und für Enddrücke von bis zu 100 MPa und Abgabemengen von bis zu 1.500 Nm³/h. Inwieweit diese Auslegungsgrößen auch für CNG-Anwendungen gültig sind, müsste noch validiert werden.

Wärtsilä Hamworthy

Tabelle 32: Übersicht über ausgewählte Hersteller von CNG-Kompressoren

<table>
<thead>
<tr>
<th>CNG-Kompressor-Hersteller</th>
<th>Hersteller</th>
<th>Eingangsdruck (MPa)</th>
<th>Lieferdruck (MPa max.)</th>
<th>Förderleistung (Nm³/h)</th>
<th>Antriebsleistung (kW)</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ariel</td>
<td></td>
<td>0,03 - 1,36</td>
<td>31</td>
<td>200 - 2.000</td>
<td>37 - 895</td>
<td>www.arielcorp.com</td>
</tr>
<tr>
<td>Aspro</td>
<td></td>
<td>0,02 - 6</td>
<td>25 - 30</td>
<td>≤2.500</td>
<td>≤200</td>
<td>www.aspro.com</td>
</tr>
<tr>
<td>Atlas Copco</td>
<td></td>
<td>0,05 - 2,4 / 0,13 - 7</td>
<td>35</td>
<td>470 - 6.800</td>
<td>?</td>
<td>www.atlascopco.com</td>
</tr>
<tr>
<td>Bauer</td>
<td></td>
<td>0,07 - 3,8</td>
<td>34,5</td>
<td>561</td>
<td>?</td>
<td>www.bauercomp.com</td>
</tr>
</tbody>
</table>
5.1.2 Tankstellen-Systemintegratoren

Bohlen & Doyen (B&D)

B&D arbeitet mit Verdichtern der Firma Lenhardt & Wagner. Bei geeignetem Vordruck kann B&D damit Lieferleistungen von bis zu 2.000 Nm³/h ermöglichen. Betankungen ohne Unterbrechung / Betankungsstop sind garantiert.

Greenfill

Schandl

Schwelm
In dem überschaubaren Markt bisher relativ kleiner CNG-Tankstellen in Deutschland sieht sich Schwelm als Marktführer. Eingangsdrücke von 0,002 bis 7 MPa sind möglich, bei Lieferleistungen zwischen 15 Nm³/h und 3.000 Nm³/h bei Lieferdrücken von bis zu 30 MPa. Zapfsäulen mit 1 bis 4 Schläuchen für NGV1 bzw. NGV2 sind im Angebot. Schwelm arbeitet bei den Kompressoren mit Technologie von J.A. Becker & Söhne GmbH & Co. Schwelm bietet für seine vollautomatischen Erdgasbetankungsanlagen die Verdichterstationen, Erdgaszapfsäulen und das Zubehör für Pkw-, Bus- und Nutzfahrzeuganwendungen an.

Tabelle 33: Identifizierte Systemintegratoren von CNG-Tankstellen

<table>
<thead>
<tr>
<th>Integrator</th>
<th>Kompressorlieferant</th>
<th>Eingangsdruck [MPa]</th>
<th>Lieferdruck [MPa]</th>
<th>Förderleistung je Kompressor [Nm³/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bohlen & Doyen</td>
<td>Lenhardt & Wagner</td>
<td>0-15</td>
<td>≤ 42</td>
<td>≤ 2.000</td>
</tr>
<tr>
<td>Greenfill</td>
<td>z.B. Sauer Compressors</td>
<td>0-3,5</td>
<td>30</td>
<td>80 - 1.400</td>
</tr>
<tr>
<td>Schandl</td>
<td>IdroMeccanica</td>
<td>2,5-25</td>
<td>25 +</td>
<td>?</td>
</tr>
<tr>
<td>Schwelm</td>
<td>J.A. Becker</td>
<td>0-7</td>
<td>≤ 30</td>
<td>15 - 3.000</td>
</tr>
</tbody>
</table>

5.2 Grobauslegung einer großen CNG-Tankstelle für schwere Nutzfahrzeuge

Die Auslegung der Tankstelle erfolgte basierend auf einem für Autohöfe typischen synthetischem Abgabeprofil (Abbildung 38), das von zwei täglichen Abgabespitzen von jeweils 3 Stunden morgens und abends ausgeht.
Eine Tankstelle mit zwei Zapfsäulen, die pro Stunde 3-4 Lkw betanken kann (Annahme: 3 Volltankäquivalente à 179 kg Erdgas pro Stunde) und an 250 Tagen im Jahr in Betrieb ist, gibt am Tag ca. 7 t Erdgas ab, was im Jahr ca. 22 Mio. Nm³ entspricht (basiert auf [Braun 2016]).

Die CNG-Tankstelle verfügt (auch aus Redundanzgründen) entweder über zwei Kompressoren à 1.100-1.300 Nm³/h Kapazität (Vordruck ca. 1,9 MPa) bzw. drei Kompressoren à 700 Nm³/h Kapazität (Vordruck ca. 2,9 MPa) und über eine damit darstellbare Gesamtkapazität von 1.633 Nm³/h. Eine CNG-Tankstelle dieser Kapazität kostet etwa 1,8 Mio. € (siehe Tabelle 14) und liefert unter den getroffenen Annahmen Kraftstoff für 0,086 €/kWh in den Lkw. Eine vergleichbar große LNG-Tankstelle liefert unter den getroffenen Annahmen Kraftstoff für 0,090 €/kWh in den Lkw. Bei der Ermittlung der Investition sind berücksichtigt: Gaseinleitungsstrecke, CNG-Speicher 6.000 l (630 Nm³), Kühlsystem für Kompressor, Rückkühler für Kühlkreislauf, Steuerung und Schaltschränke für Kompressoren, Einrichtung zur Datenfernübertragung, Odorieinrichtung, Gebäudemodul aus Beton, Gasausleitungsstrecke, MF-Block PF, 2 Dispenser, Sequencingblock für Zapfsäule, Baukosten für Überdachung, Erdarbeiten, Asphaltierung und Bezahlungssystem, Genehmigung, Werkmontage und -prüfung, Transport und Errichtung vor Ort, Rohrleitungen, Kabel, Eichungen, Projektabwicklung, Dokumentation. Bei den Betriebskosten sind Wartung und Instandhaltung der Kompressoren, Sicherheitsprüfung der Drucktanks, Kalibrierung der Dispenser und Energiekosten (Strombezugsosten, Erdgasbezugs kosten) berücksichtigt.
Betrachtet man die Gesamtkapazität eines typischen deutschen Autohofs, dann werden dort etwa 217.300 kWh/Tag abgegeben. Dies entspricht etwa 16,7 t Erdgas pro Tag. Die für diese Studie gewählte Erdgastankstellengröße entspricht 42% dieser Menge. Für ein Volkszenario einer CNG-Versorgung müsste dementsprechend das 2,4-fache der gewählten Tankstellengröße in Ansatz gebracht werden.

Geht man weiter vereinfachend davon aus, dass ein Lkw 2/3 der Maximalmenge nachtankt (also etwa 130 von rund 200 kg), dann kann eine Tankstelle, die 16,7 t CNG am Tag abgibt, etwa 130 Lkw unterstützen. Eine CNG-Tankstelle, die nur 7 t pro Tag abgibt (wie die in unserem Beispiel angenommene), unterstützt dementsprechend ca. 55 Lkw.

Mit dem gewählten Ansatz ist eine modulare Erweiterung der Tankstelle in containerisierter Form von 7 t auf größere Kapazitäten bei verfügbaren Flächen jederzeit möglich.

5.3 **Grundausstattung für CNG-Tankstellen-Netz an deutschen Autobahnen**

In diesem Unterkapitel wird eine vereinfachte CNG-Tankstellen Grundausstattung für Lkw an Bundesautobahnen (BAB) mit zunächst 15, dann 30 Betankungsmöglichkeiten betrachtet. Anhand dieser Betrachtung können Aussagen bzgl. Fahrfähigkeit, Streckenredundanzen und mögliche Routenwahl bei einer anfänglichen CNG-Betankungsinfrastruktur für Lkw an BAB getroffen werden.

Als eine Betankungsmöglichkeit gilt in der folgenden Betrachtung jeweils entweder

- eine Tankstelle, die von beiden Fahrtrichtungen aus erreichbar ist (z.B. Autohof) oder
- eine Doublette zweier separater CNG-Betankungsanlagen, eine pro Fahrtrichtung (z.B. an Autobahntankstellen).

Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Analyse von Tankstellen mit Hochleistungskompressoren

Abbildung 39: Lkw-Aufkommen auf deutschen Autobahnen 2010 [BAST 2010]
Abbildung 40: Mögliche Standorträume bei 15 Betankungsmöglichkeiten
Bewertung der CNG-Versorgung bei 15 Betankungsmöglichkeiten (Abbildung 40)

Ein erstes Tankstellennetzwerk mit 15 Betankungsstandorten ermöglicht eine grundlegende CNG-Versorgung der meisten Haupt-Schwerlastverkehrsstrecken. Auf den versorgten Hauptstrecken beträgt der Abstand zwischen den CNG-Betankungsmöglichkeiten in etwa 400 km. Die Versorgungssituation bzgl. des gesamten deutschen Autobahnnetzes lässt sich wie folgt beschreiben:

- Grundlegende Fahrfähigkeit auf den Haupt-Schwerverkehrs- und Transitstrecken meist gegeben. Umwege um Tankstellen zu erreichen teilweise notwendig
- Fahrfähigkeit auf weniger stark befahrenen BAB-Abschnitten in der Regel nur eingeschränkt möglich
- (Strecken-) Redundanz meist nicht vorhanden, d.h. meist keine akzeptable Ausweichmöglichkeit bei Streckensperre oder Tankstellenausfall
- Fahrfähigkeit bei Touren abseits der BAB nicht flächendeckend gegeben
- Routenwahl muss sich an CNG-Tankstellenverfügbarkeit orientieren. Freie Routenwahl meist nicht möglich

Bewertung der CNG-Versorgung bei 30 Betankungsmöglichkeiten (Abbildung 41)

Mit einer Erweiterung des CNG-Tankstellennetzwerks für Lkw auf 30 Betankungsstandorte lässt sich die Fahrfähigkeit im deutschen Autobahnnetz bereits deutlich verbessern.

- Fahrfähigkeit auf den Haupt-Schwerlastverkehrsstrecken ist gegeben
- Fahrfähigkeit auf weniger stark befahrenen Strecken meist gegeben
- (Strecken-) Redundanzen teilweise vorhanden. Ein Ausweichen auf eine parallele Autobahn (z.B. bei Streckensperre) deutlich verbessert
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Analyse von Tankstellen mit Hochleistungskompressoren

Abbildung 41: Mögliche Standorträume bei 30 Betankungsmöglichkeiten
6 Markteinführung einer CNG Infrastruktur für schwere Nutzfahrzeuge

Wie zu Beginn des Berichtes dargelegt war die Intention dieser Studie, den Einsatz von CNG zum Betrieb von Lkw im Fernverkehr im Vergleich zum Einsatz von Diesel und LNG im Hinblick auf seine Marktfähigkeit hin zu analysieren. Der Grund dafür liegt in der Einsicht, dass

a) das für die Betankung erforderliche Tankstellennetzwerk eher auf verhältnismäßig wenige Tankstellen hauptsächlich entlang der Transitäutobahnen und damit die erforderliche Gesamtinvestitionen in Tankstelleninfrastruktur beschränkt sein kann,

b) die möglichen Absatzmengen für Erdgas wegen der hohen jährlichen Fahrleistungen von Lkw im Fernverkehr vergleichsweise hoch sind und
c) die Möglichkeiten einer Substitution von verbrennungsfähigen elektromotorischen Antriebe in diesem Fahrzeugsektor am spätesten erfolgen wird, was die Nutzungsdauer von Erdgas in diesem Fahrzeugsegment gegenüber anderen Segmenten deutlich verlängern würde.

In diesem Kapitel sind daher die Untersuchungsergebnisse eines internationalen Vergleichs, zu Vorbedingungen für eine erfolgreiche Einführung von CNG, zu möglichen, neben der Gasindustrie erforderlichen Akteuren, zum Wettbewerb mit anderen Alternativlösungen sowie zentrale Handlungsempfehlungen dargestellt. Zum Abschluss des Kapitels wird ein Fahrplan für eine mögliche Marktentwicklung mitsamt eines Maßnahmenkatalogs vorgeschlagen.

6.1 Globale Marktentwicklung von Erdgasfahrzeugen

In 2013 wurden mit 5,1 Mio. produzierten Erdgasfahrzeugen global ca. 6% aller Fahrzeuge mit Erdgasantrieb ausgerüstet (vornehmlich in Argentinien, Brasilien, China, Indien, Iran, Italien und Pakistan). Von diesen sind 94% Pkw, 4% Stadtbusse und der Rest mittelgroße und schwere Nutzfahrzeuge, Gabelstapler und andere kommerzielle Fahrzeuge. In den kommenden Fahrzeuggenerationen (Zehnjahresausblick) werden dabei voraussichtlich 94% der Erdgasfahrzeuge mit 20 bzw. 25 MPa Druckspeicherung ausgerüstet, die restlichen 6% mit LNG-Tanks. Entsprechend sollen auch die Erdgas-Tankstellennetze wachsen, wobei eine Tankstelle potenziell 4.000 bis 8.000 Fahrzeuge versorgen kann. Für die USA wurden z.B. kürzlich Expansionspläne angekündigt [Love’s 2016].

Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Markteinführung einer CNG Infrastruktur für schwere Nutzfahrzeuge

Abbildung 43: Globale Produktionsvorhersage für Druckgasbehälter (CNG und CGH₂), 2006-2023 (LBST auf Basis [Composites 2014])

Das Produktionswachstum wird mit Schwerpunkten im asiatischen Raum (61%) und weniger stark ausgeprägt auch in Südamerika (12%), Europa (14%) und dem mittleren Osten (12%) gesehen, jedoch mit nur je <1% in Nordamerika und Afrika. Dabei fällt auf, wie stark in den letzten Jahren die Anzahl der Faserverbundtankhersteller von 12 (vor 10 Jahren) auf inzwischen etwa 30 Unternehmen weltweit gestiegen ist (siehe Tabelle 34). Obwohl der Fokus insbesondere in den sich entwickelnden Ländern derzeit noch auf der Verwendung von Typ I bis Typ III Behältern liegt, wächst auch die Zahl der für hohe gravimetrische Speicherdichten, insbesondere für einen Einsatz in Nutzfahrzeugen essenziellen Typ IV-Tank-Hersteller, was deren relativen Markttanteil deutlich steigern und die spezifischen Behälterproduktionskosten deutlich senken dürfte. Als ein wichtiger Treiber für diese Entwicklung wird die Einführung des Euro VI Emissionsstandards in Europa gesehen, der die Einführung von Erdgas in Stadtbusse und Nutzfahrzeugen sowie von Wasserstoff in Pkw und Stadtbusse deutlich beschleunigen dürfte. In Nutzfahrzeugen können die spezifische Gewichtsreduktion (bis zu 500 kg pro Fahrzeug) und höhere Zuverlässigkeit (bis zu 30 Betriebsjahre) bei erhöhten Gasdrücken (35 MPa) am ehesten in zusätzliche Nutzlast, geringeren Kraftstoffbedarf, geringere Emissionen und geringere Betriebskosten umgesetzt werden.
Tabelle 34: Verbundmaterialtankhersteller weltweit und ihre geschätzten Marktanteile (Auswahl) (LBST auf Basis [Composites 2014])

Die 20 führenden Hersteller von Verbund-Druckgasbehältern im Vergleich

<table>
<thead>
<tr>
<th>Unternehmen</th>
<th>Typ I</th>
<th>Typ II</th>
<th>Typ III</th>
<th>Typ IV</th>
<th>Typ V</th>
<th>Geschätzter Marktanteil CNG 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>3M / Xperion</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,0%</td>
</tr>
<tr>
<td>Beijing China Tank Industry Co. Ltd.</td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td>0,1%</td>
</tr>
<tr>
<td>Cilbras (Tochtergesellschaft von Praxair)</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td>5,5%</td>
</tr>
<tr>
<td>CleanNG</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,0%</td>
</tr>
<tr>
<td>CNG Cylinders International</td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td>0,2%</td>
</tr>
<tr>
<td>Cobham Composites</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td><0,1%</td>
</tr>
<tr>
<td>COMAT GmbH</td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td><0,1%</td>
</tr>
<tr>
<td>Composite Technology Development</td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td>0,1%</td>
</tr>
<tr>
<td>Composites Aquitaine</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td><0,1%</td>
</tr>
<tr>
<td>Faber Industry SpA</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td>28,4%</td>
</tr>
<tr>
<td>GASTANK AB</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,2%</td>
</tr>
<tr>
<td>Hexagon Lincoln</td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td>6,3%</td>
</tr>
<tr>
<td>INFLEX-Argentoil S.A.</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td>8,8%</td>
</tr>
<tr>
<td>Luxfer Gas Cylinder (inkl. Dynetek & Vexxel)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td>11,4%</td>
</tr>
<tr>
<td>MCS Technologies GmbH</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td>0,7%</td>
</tr>
<tr>
<td>Pressed Steel Tank</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td><0,1%</td>
</tr>
<tr>
<td>Quantum Technologies Worldwide</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,0%</td>
</tr>
<tr>
<td>Ullit</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,7%</td>
</tr>
<tr>
<td>Worthington Cylinders (inkl. SCI)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td>3,3%</td>
</tr>
<tr>
<td>Xperion</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,0%</td>
</tr>
</tbody>
</table>

Anteil am globalen Markt für Verbund-Druckgasbehälter für Fahrzeuge: 68,8%

6.2 Die USA als Fallbeispiel für einen erfolgreichen Einsatz von Erdgas in schweren Nutzfahrzeugen

Folgende Erfolgskriterien wurden in den USA in 2012 für die künftige Marktfähigkeit von Erdgas zum Betrieb schwerer Nutzfahrzeuge gesehen:

- Die gesicherte Versorgung mit ausreichenden Mengen kostengünstigen Erdgases,
- die Entwicklung geeigneter, d.h. hocheffizienter und emissionsarmer Erdgasmotoren,
- der weitere Ausbau einer nutzfahrzeugtauglichen Betankungsinfrastruktur,
- deutliche Kostenvorteile gegenüber dem Betrieb mit Dieselkraftstoff,
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Markteinführung einer CNG Infrastruktur für schwere Nutzfahrzeuge

- ausreichende betriebliche Sicherheit und deren Wahrnehmung durch die beteiligten Akteure als auch
- ein vorteilhafter ökologischer Fußabdruck und positive Wirkung auf die Gesundheit (Emissionen, Lärm).

Dabei spielten in den USA die Kraftstofflieferunabhängigkeit (= Diversifizierung) und niedrigere Kosten die wichtigste Rolle.

Wichtiges Ziel eines verstärkten Erdgaseinsatzes im Verkehrssektor war ein möglichst kosteneffizienter Aufbau der erforderlichen Betankungsinfrastruktur, die sich im Sinne einer möglichst hohen Tankstellenauslastung zunächst an den Verkehrsadern mit höchster Verkehrsdichte von schweren Nutzfahrzeugen orientiert hat. Zur Veranschaulichung des wirtschaftlichen Schwerpunktes der Ausbaumaßnahmen seien hier als Beispiel Müllfahrzeuge genannt, die besonders günstig mit eigenem Klärgas zu betreiben sind oder Stadtbusse, die in den USA finanziell besonders gefördert werden [ACT 2012].

Aus den oben genannten Erfolgsfaktoren lassen sich entsprechend auch mögliche Hemmnisse bei der Einführung von Erdgas in diesem Sektor ableiten:
- Kein unmittelbarer Kostenvorteil erzielt
- Der Betrieb führt zu Problemen mit der Zuverlässigkeit (Fahrzeug, Tankstellen)
- Die Sicherheitsziele werden nicht erreicht
- Die umweltspezifischen Ziele (wie z.B. CO₂- oder Methanemissionen) werden nicht erreicht (wobei hier auch die Auswirkungen des Fracking enthalten sind).

Die Analyse der technologischen Voraussetzungen für die Einführung von Erdgas in schweren Nutzfahrzeugen, insbesondere in Lkw für den Fernverkehr, hat gezeigt, dass ein CNG-Tanksystem etwa das 3,7-fache Volumen des Dieseltankvolumens beansprucht, beim LNG-Tanksystem noch etwa ein Faktor 1,7. Diese Herausforderung ließ sich aber unter den technisch-regulatorischen Randbedingungen in den USA durch angepasste Tanksysteme lösen. Eine wesentliche Voraussetzung für die Unterbringung von CNG- anstatt von LNG-Tanksystemen an Bord schwerer Nutzfahrzeuge sind die in den USA eher

Abbildung 44: Vertikale Unterbringung von Drucktanks hinter dem Fahrerhaus US-amerikanischer Lkw [Quantum 2015]

Zusammengefasst lassen sich in den USA die Vorteile von CNG gegenüber LNG zum Einsatz in schweren Nutzfahrzeugen folgendermaßen darstellen:

- Niedrigere Kraftstoffkosten,
- einfacherer Umgang beim Betanken bzw. bei der Wartung sowie
- höhere Sicherheit (Bedienung der Tankstelle und geringeres Abdampfen nach längerer Standzeit).

Die Vorteile von LNG gegenüber CNG:

- Niedrigeres Gewicht (Anmerkung der Studienautoren: die Aussage bezog sich vermutlich auf alte CNG-Drucktanktechnologie, d.h. Typ III statt Typ IV-Behälter und lässt sich daher heute nicht mehr halten),
- geringere Fahrzeugkosten,
- Nutzbarkeit in Regionen ohne Erdgasnetz (Tankstellenflexibilität) sowie
- niedrigeres Kraftstoffspeichervolumen bzw. höhere Reichweite pro Befüllung.
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Markteinführung einer CNG Infrastruktur für schwere Nutzfahrzeuge

Dabei beträgt das Speicherdrukniveau für Erdgas an Bord von Nutzfahrzeugen 25 MPa statt der in Europa üblichen 20 MPa, was aber die spezifische volumetrische System-speicherdichte nur unwesentlich erhöht

Zusammengefasst lässt sich feststellen, dass zwar viele Anforderungen an den Einsatz von CNG in schweren Nutzfahrzeugen in Deutschland / Europa denen in den USA ähneln, es aber auch einige markante Unterschiede gibt, die in folgender Liste zusammengefasst sind:

- Das um 5 MPa höhere Druckniveau der CNG-Speicherung in den USA erhöht die spezifische volumetrische Speicherdichte um <17%.
- Die Regulierung zur Längenbeschränkung US-amerikanischer Nutzfahrzeuge lässt die Montage von Speicherpaketen vertikal hinter dem Fahrerhaus ohne weiteres zu, was die Reichweite mit CNG auf deutlich über 1.000 km erhöht.
- Die USA verfügen mit der Einführung der Fracking-Technologie zur Erschließung großer heimischer Shale-Gas-Felder über eine heimische Energiequelle, mit der die Energieversorgung diversifiziert werden kann (”weg vom Öl” – siehe dazu auch Kapitel 3). Gleichzeitig gibt es jedoch auch intensive Debatten über die Umweltverträglichkeit dieser neuen Erdgasquelle (”Methanemissionen und Verschmutzung des Grundwassers”).

Zusammengefasst lässt sich feststellen, dass die regulatorischen, technischen und energiepolitischen Randbedingungen für den Einsatz von CNG in Nutzfahrzeugen im Fernverkehr in den USA insgesamt favorabler sind als in Europa / Deutschland. Es gilt aus unserer Sicht daher auch für Europa vorzuschlagen, insbesondere die technischen Randbedingungen zu verbessern, d.h. sowohl den Einbauraum hinter dem Fahrerhaus regulatorisch zu vergrößern, als auch eine Druckerhöhung der CNG-Speicherung an Bord von Nutzfahrzeugen für den Fernverkehr zuzulassen.

6.3 Kriterienbasierte Einschätzung des Entwicklungsstandes von CNG für schwere Nutzfahrzeuge im Fernverkehr

Zur Übersicht des Entwicklungsstandes einer möglichen Markterschließung des schweren Nutzfahrzeugsegmentes mit CNG wurden ausgewählte Schlüsselkriterien in Abbildung 45 bewertet. Diese umfassen dabei die technischen, wirtschaftlichen, genehmigungsrelevanten und Umweltaspekte, die im Rahmen dieser Studie untersucht wurden und daher hier am besten qualitativ bewertet werden können.

In dieser überschlägigen Berechnung ist jedoch nicht das geringere Nettovolumen eines 25 MPa-Drucktanks durch die größere erforderliche Wandstärke berücksichtigt.

Abbildung 45: Entwicklungsstand der CNG-Technologie zum Betrieb von Nutzfahrzeugen für den Fernverkehr (diese Studie)

6.4 Stärken-Schwächen-Analyse

Um die Marktchancen für den Einsatz von CNG in schweren Nutzfahrzeugen für den Fernverkehr besser zu verstehen, ist es sinnvoll, die wichtigsten Argumente gegenüber den wichtigsten Wettbewerbstechnologien pro und kontra zu sammeln. Als wichtigste
Konkurrenten in diesem Nutzfahrzeugsegment gelten derzeit noch immer Dieselkraftstoff sowie verflüssigtes, tiefkaltes Erdgas (LNG).

Anstelle einer klassischen Stärken-Schwächen-Analyse (SWOT-Analyse), die in einer Tabelle sowohl eine interne als auch eine externe Einordnung von Stärken und Schwächen vorsieht, werden hier in getrennten Darstellungen die Stärken und Schwächen eines potenziellen Einsatzes von CNG als Kraftstoff für schwere Nutzfahrzeuge im Fernverkehr im Vergleich zu Diesel und im Vergleich zu LNG separat dargestellt. Zunächst ein Vergleich der CNG- gegenüber der Dieseltechnologie:

Stärken:
- Diversifizierung der Kraftstoffversorgung für den Nutzfahrzeugsektor,
- Kraftstoffversorgung auf Basis eines etablierten und redundanten Energieverteil- systems,
- im Prinzip (bei Einsatz von Ottomotoren) einfachere und daher robustere Motor- bzw. Abgasnachbehandlungstechnik zur Erfüllung der Euro VI Vorgaben,
- potenziell niedrigere THG-Emissionen (WtW), jedoch nur mit adaptierter und optimierter Verbrennungsmotortechnologie,
- geringere Lärmemissionen beim Einsatz von Ottomotoren und
- Verlagerung von Gefahrguttransporten zur Versorgung der Tankstellen von der Straße in rohrleitungsbasierten Transport.

Schwächen:
- Geringerer motorischer Wirkungsgrad auf Basis heutiger Motortechnologie; dedizierte Erdgasmotorentwicklung erfordert Investitionen von 1 Mrd. € pro Hersteller,
- in diesem Fahrzeugsektor kein eingeführter Kraftstoff (weniger Lärm wird im allgemeinen mit Leistungsarmut korreliert),
- in Europa bisher keine optimierten Fahrzeuge am Markt eingeführt; Motorentechnik auf breiten Einsatz in Verbindung mit entsprechenden Investitionen noch zu ertüchtigen,
- mangelndes Faktenwissen bei relevanten beteiligten Akteuren in Industrie, Verbänden und Politik,
- Fahrzeugreichweite auf Basis des heutigen Regelwerks auf ca. 600-700 km beschränkt; höheres Tankvolumen durch hinter dem Fahrerhaus installiertes Druckbehältersystem erst durch eine Änderung der Regulatorik zu erzielen und
- kein etabliertes Tankstellennetz; dieses muss erst durch investive Maßnahmen eingerichtet werden, z.B. mit Markteinstieg über regionale Einführung.

Im Vergleich zu LNG als Kraftstoff für schwere Nutzfahrzeuge im Fernverkehr sind für den Einsatz von CNG folgende Stärken und Schwächen zu nennen:
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Markteinführung einer CNG Infrastruktur für schwere Nutzfahrzeuge

Stärken
- Existierende und dichte Hochdruck-Erdgas-Versorgungs-Infrastruktur (HD-Erdgasnetz),
- einfachere Betankung,
- niedrigere Vollkosten,
- geringere THG-Emissionen (WtW); weitere Verringerung der THG-Emissionen durch Biomethan oder Biogaszumischung, die im HD-Erdgasnetz allerdings beschränkt ist,
- hohes Kompetenzpotenzial bei allen Industrieakteuren,
- prinzipiell geringerer Genehmigungsaufwand, da CNG als Kraftstoff im Verkehrssektor bereits breit eingeführt ist und
- ggfs. kein BImSchG-Verfahren für Tankstelle, da bedarfsgerechte vor-Ort-Speicherung nur in geringem Umfang erforderlich ist.

Schwächen
- CNG-Tankstellen auf Verfügbarkeit eines nahen zumindest Mitteldruck-Erdgasnetzes angewiesen,
- geringere volumetrische Speicherkapazität und damit geringere Reichweite auf Basis heutiger Technologien und Regulatorik,
- mangelnde Einsichten zur technischen Innovation bzw. keine einheitliche, geschweige denn abgestimmte Haltung innerhalb der Erdgasindustrie,
- breite Kompetenz bzgl. Tankstellen muss erst im Hinblick auf hohe Durchflüsse (und ggfs. höhere Drücke) entwickelt werden,
- regulatorische Randbedingungen müssen für Reichweiten >700 km an relevante An-Bord-Speichermengen angepasst werden,
- keine politische Verankerung; die Versorgung schwerer Nutzfahrzeuge im Fernverkehr mit CNG kommt in CPT-AFID nicht explizit vor, mit LNG dagegen schon.

Aus dem Stärken-Schwächen-Fazit einer amerikanischen Analyse [ACT 2012] geht hervor, dass die wesentlichen Hindernisse für die Einführung von Erdgas in Nutzfahrzeugen im Fernverkehr
- zum einen die hohen Fahrzeuganschaffungskosten auf Grund der geringen Fahrzeugstückzahlen sind (Motoren, Erdgassystemtechnik), die nur durch entsprechende Vorteile im Fahrzeugbetrieb (niedrigere Wartungskosten durch robuster Motorentechnik oder geringere Erdgaskraftstoffkosten) wieder ausgeglichen werden können und
- zum anderen die heute stark eingeschränkte Tankstellennetzstruktur.

Beide Argumente beziehen sich jedoch auf CNG und LNG gleichermaßen, da sich die vorhandene CNG-Tankstellennetzstruktur für die Betankung schwerer Nutzfahrzeuge nicht eignet und damit, wie auch für LNG, in Europa ebenfalls heute nicht existent ist.
Die Entwicklung einer verbesserten Erdgasmotorentechnik befindet sich aber in der Vorbereitung.

Sowohl die Entwicklung dedizierter Erdgasmotoren als auch der CNG-Tankstellenausbaus werden noch großer Investitionen bedürfen und da diese durch unterschiedliche Industriebranchen aufzubringen sind, ist ein vorausgehender und zeitintensiver Abstimmungsprozess erforderlich. Einen möglichen Ansatz einer Public-Private-Partnership (PPP) haben Industriekomponente und das Bundesverkehrsministerium (BMVI) mit der Einrichtung der H₂ Mobility Initiative zur Einführung einer Wasserstofftankstellenausbaus zur Versorgung von Brennstoffzellen-Pkw gewählt [H₂ Mobility 2015].

6.5 Politische Maßnahmen zur Förderung von CNG in schweren Nutzfahrzeugen im Fernverkehr

Eine detaillierte Untersuchung relevanter Vorschriften für einen Betrieb von CNG-betriebenen schweren Nutzfahrzeugen im Fernverkehr würde den Rahmen dieser Studie sprengen. Stattdessen sollen hier nur einige zentrale Beobachtungen festgehalten werden, die für eine breite Markteinführung favorabel oder aber auch hinderlich sein können.

Politische Maßnahmen können drei Themenbereiche betreffen:

1. Maßnahmen zur Förderung bzw. Begünstigung umweltfreundlicher alternativer Antriebe bzw. Kraftstoffe,
2. beschleunigte Umsetzung der seit Jahren vereinbarten Klimagasreduktionsmaßnahmen im Verkehrssektor und
3. Maßnahmen zum Aufbau alternativer Kraftstoffinfrastrukturen,

wobei in europäische und deutsche Maßnahmen zu unterscheiden ist.

Europa

- Ladeinfrastruktur für batterie-elektrische Fahrzeuge und zur Versorgung von Vorfeldfahrzeugen an Flughäfen,
- Wasserstoff als Kraftstoff für brennstoffzellen-elektrische Fahrzeuge,
- CNG als Kraftstoff für Straßenfahrzeuge (explizit werden jedoch nur Pkw genannt) sowie
LNG als Kraftstoff für die Binnenschifffahrt und schwere Nutzfahrzeuge.

Der Aufbau aller Alternativkraftstoffinfrastrukturen ist mit folgenden mehr oder weniger einschränkenden Bedingungen verbunden:

- **Ladeinfrastruktur für batterie-elektrische Fahrzeuge:** Einrichtung einer Infrastruktur zumindest in städtischen bzw. vorstädtischen Ballungsräumen und anderen dicht besiedelten Gebieten sowie ggf. in Netzen, die von den Mitgliedstaaten bestimmt werden, bis 31. DEZ 2020. Die Kommission bewertet dann diese Vorgaben, um sicherzustellen, dass bis 31. DEZ 2025 in jedem Mitgliedstaat zumindest im TEN-V-Kernnetz in städtischen bzw. vorstädtischen Ballungsräumen und anderen dicht besiedelten Gebieten eine angemessene Anzahl von öffentlich zugänglichen Ladepunkten eingerichtet wird (Artikel 4, (1) und (2)).

- **Wasserstoff:** Einrichtung einer flächendeckenden Infrastruktur „für Mitgliedsstaaten, die sich dafür entscheiden, in ihre nationalen Strategierahmen öffentlich zugängliche Wasserstofftankstellen aufzunehmen“ (Artikel 5 (1)). Laut Mobilitäts- und Kraftstoffstrategie der deutschen Bundesregierung (MKS) ist Wasserstoff bereits ein wichtiger Strategiebestandteil [MKS 2013].

- **CNG:** Benennung der städtischen bzw. vorstädtischen Ballungsräume und anderer dicht besiedelter Gebiete sowie von Netzen im nationalen Strategierahmen (Artikel 3 (1) 6. Spiegelstrich) und Sicherstellung der Errichtung einer angemessene Anzahl von öffentlich zugänglichen CNG-Tankstellen (Artikel 6 (7)) bis 31. DEZ 2020. Bis 31. DEZ 2025 Sicherstellung, dass zumindest im vorhandenen TEN-V-Kernnetz eine angemessene Anzahl von öffentlich zugänglichen CNG-Tankstellen eingerichtet wird, damit gewährleistet ist, dass CNG-Kraftfahrzeuge in der gesamten Union verkehren können (Artikel 6 (8)).

- **LNG:** Verpflichtung zum Aufbau einer angemessenen Anzahl von öffentlich zugänglichen LNG-Tankstellen bis 31. DEZ 2025 zumindest im vorhandenen TEN-V-Kernnetz „sofern die Kosten im Vergleich zum Nutzen, einschließlich des Nutzens für die Umwelt, nicht unverhältnismäßig sind."

Wichtige Eckdaten im Zeitplan der AFiD sind in Tabelle 35 spezifisch für das Thema Wasserstoff zusammengefasst. Danach müssen bereits bis zum 18. NOV 2016 sogenannte verbindliche Nationale Strategierahmen (NSR) für die für jedes Mitgliedsland relevanten Kraftstoffinfrastrukturen entwickelt werden, die auch in sich, d.h. über die unterschiedlichen Infrastrukturen hinweg, konsistent sein sollen. Im Bestreben der Erfüllung dieser durch die Europäische Kommission (EC) auferlegten Verpflichtung bereitet die Bundesregierung, hauptsächlich vertreten durch das Verkehrsministerium (BMVI), derzeit ihren Strategierahmen vor. Dazu bedient sie sich zentraler nationaler Einrichtungen, für das Thema Wasserstoff z.B. der Nationalen Organisation Wasserstoff (NOW) und zum Thema LNG der von der Deutschen Energieagentur (dena) eingerichteten LNG-Taskforce, in dem relevante Interessensvertreter auch aus der Erdgaswirtschaft (DVGW) versammelt sind.

Um das Thema zeitgerecht im nationalen Strategierahmen zu platzieren, wäre somit vor dem Hintergrund der Frist (18. NOV 2016) eine umgehende Initiierung erforderlich. Wichtig ist in diesem Zusammenhang zu verstehen, dass das BMVI die Erarbeitung der Einzel-NSR auch als Beitrag zur Detaillierung und Feinjustierung der europäischen alternativen Antriebs- und Kraftstoffstrategie versteht, um die Einführung auch aus deutscher Perspektive industri- und umweltpolitisch zielkonform zu gestalten. Relevante Beiträge von der Industrie sind entsprechend willkommen.

Tabelle 35: Eckdaten für die Umsetzung der Alternative Fuels Infrastructure Directive (AFID) spezifisch für das Thema Wasserstoff

<table>
<thead>
<tr>
<th>Datum</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bis zur Abgabe des Nationalen Strategierahmens</td>
<td>Veröffentlichung Richtlinie 2014/94/EU</td>
</tr>
<tr>
<td>22. OKT 2014</td>
<td>Veröffentlichung Richtlinie 2014/94/EU</td>
</tr>
<tr>
<td>18. NOV 2016</td>
<td>Abgabe Nationaler Strategierahmen (NSR)</td>
</tr>
<tr>
<td>Nach Abgabe des Nationalen Strategierahmens</td>
<td>Veröffentlichung Richtlinie 2014/94/EU</td>
</tr>
<tr>
<td>18. NOV 2017</td>
<td>Veröffentlichung Richtlinie 2014/94/EU</td>
</tr>
<tr>
<td>18. NOV 2019</td>
<td>Erster Statusbericht der Mitgliedsstaaten (alle 3 Jahre)</td>
</tr>
<tr>
<td>18. NOV 2020</td>
<td>Statusbericht der EU-Kommission an EU-Parlament und Rat (alle 3 Jahre)</td>
</tr>
<tr>
<td>31. DEZ 2020</td>
<td>Überprüfung/Anpassung der Richtlinie auf Kohärenz der Mitgliedsstaaten durch EU-Parlament und Rat</td>
</tr>
<tr>
<td>31. DEZ 2025</td>
<td>Angemessene Anzahl von Wasserstoff-Tankstellen in Betrieb</td>
</tr>
</tbody>
</table>

Deutschland

Da zu diesem Zeitpunkt die Diskussion sich noch nicht im Detail mit der weiterentwickelten und für Nutzfahrzeuge im Fernverkehr tauglichen CNG-Verbundmaterialtank-
und CNG-Tankstellenentwicklung befasst hatte, kommt die Versorgung von Nutzfahrzeugen im Fernverkehr aus einer entsprechenden CNG-Infrastruktur aber auch in der MKS nicht vor (siehe Abbildung 46), in der der Einsatz von CNG explizit ausgeschlossen wird.

Da auch die Industrie sich zu diesem Zeitpunkt noch nicht für eine breitere Bedeutung von CNG für den Verkehrssektor eingesetzt hat und diese Einsichten sich erst später mit dem technologischen Wandel bei einigen wenigen Akteuren entwickelt hat, erklärt sich die Verankerung des Themas in den Diskussionen der deutschen Fachkreise.

Die ursprünglich stark deutsch dominierte Strategieformulierung zu alternativen Antrieben und Kraftstoffen hat nun mit der CPT-AFID eine europäische Dimension bekommen und wird künftig den Ausbau alternativer Kraftstoffinfrastrukturen bestimmen, die oben bereits beschrieben wurden.

<table>
<thead>
<tr>
<th>Kraftstoff</th>
<th>Antrieb</th>
<th>Straße (Personen)</th>
<th>Straße (Güter)</th>
<th>Schiene</th>
<th>Wasser</th>
<th>Luft</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Kurz – bis 100 km</td>
<td>Mittel – 100 bis 500 km</td>
<td>Lang – über 500 km</td>
<td>Kurz</td>
<td>Mittel</td>
</tr>
<tr>
<td>Strom</td>
<td>Oberleitung Batterie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Komprimierter Wasserstoff (CH₄)</td>
<td>Brennstoff-zell (BZ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flüssigwasserstoff (LH₂)</td>
<td>Verbrennungsmotor (VKM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biodiesel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bioethanol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydriertes Pflanzenöl (HVO), synthetischer Diesel aus Biomasse (Bt), Erdgas (GTL) und Kohle (CLP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Komprimiertes Erdgas, Biomethan (CNG)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flüssigerdgas (LNG)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flüssigerdgas (LPG)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethylther (DME)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Über diesen zunächst deutschen Weg muss über entsprechende Beiträge zum nationalen

Abbildung 46: Zuordnungsmatrix alternativer Kraftstoffe zu Verkehrssektoren (LBST auf Basis [MKS 2011])

Um folglich das Thema CNG zum Antrieb schwerer Nutzfahrzeuge im Fernverkehr zu platzieren, wird es nach unserem Verständnis erforderlich sein, dieses schrittweise zunächst in der Erdgasindustrie, dann bei den Nutzfahrzeugherstellern und der Zulieferindustrie erdgasspezifischer Komponenten (Verbundmaterialtanks, Tankstellen, etc.) und zeitversetzt, besser jedoch parallel, in der Politik (BMVI) zu verankern. Über diesen zunächst deutschen Weg muss über entsprechende Beiträge zum nationalen
Strategierahmen (NSR), der spätestens am 18. NOV 2016 an die Europäische Kommission (EC) übergeben wird (aber bereits bis zum Frühsommer 2016 ressortübergreifend abgestimmt sein soll!), das Thema dann in die europäische Strategie hineingetragen werden.

6.6 Akteursanalyse

Nach einer ersten übergeordneten Einschätzung des Interesses der von der CNG-Nutzfahrzeugstrategie betroffenen Akteure in Kapitel 6.3 wird in diesem Kapitel eine genauere Einschätzung vorgestellt. Diese beruht auf einer subjektiven Auswertung der im Rahmen dieser Analyse geführten Gespräche mit Experten aus den unterschiedlichen Bereichen. Die Einschätzung der möglichen Rolle der Akteure berücksichtigt dabei zwei Aspekte:

- **Kompetenz**: Aus dem Wissen um die mit der CNG-Technologie gesammelten Erfahrungen wurde abgeschätzt, welche Kompetenz bei den Akteuren jeweils vorhanden sein dürfte, die als Voraussetzung für eine spätere schnelle Umsetzung einer Strategie nützlich und damit förderlich ist und

- **Interesse**: Für diesen Aspekt wurde versucht zu beurteilen, ob einzelne Akteursgruppen derzeit ein nachweisliches Interesse am Thema CNG zum Einsatz in schweren Nutzfahrzeugen für den Fernverkehr in Deutschland oder Europa haben. Es wurde also nicht beurteilt, ob die Akteursgruppen auf Basis ihrer Kompetenz ein natürliches Interesse entwickeln müssten, sobald sie auf den aktuellen Technologienkenntnisstand aufmerksam gemacht werden.

<table>
<thead>
<tr>
<th>Kompetenz</th>
<th>Interesse</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>+2</td>
<td>+2</td>
</tr>
</tbody>
</table>

Ergebnis

- Erdgasindustrie
- Nutzer (Spediteure)
- Automobilindustrie
- CNG-Tankhersteller
- CNG Tankstellentechnik
- Zulassung / Technische Überprüfung
- Ingenieurbüros
- Forschung & Entwicklung
- Politik

Abbildung 47: Aktivitätsniveau relevanter Akteure zum Einsatz von CNG in schweren Nutzfahrzeugen

Aus der Diskrepanz der Einordnung nach beiden Aspekten in Abbildung 47 lässt sich sodann ablesen, an welche Akteursgruppen sich eine mögliche Kommunikationsstrategie
richten muss, um schnell Verbündete für eine gemeinsame Strategieentwicklung zu gewinnen. Es zeigt sich, dass insbesondere die mit der Vermarktung von Erdgas über das vorhandene Erdgasnetz, die vom Markt der CNG-Technologie abhängige bzw. erfahrene Industrie, also z.B. Tank- und Tankstellen- oder Armaturenhersteller sowie die Nutzfahrzeugindustrie überzeugt werden müssten, während Akteure aus Forschung & Entwicklung sowie Dienstleister dann von selber folgen, wenn sich Aktivitäten entwickeln. Erst wenn die Industrieakteure sich abgestimmt haben, sollten Kunden, und zwar vorteilhaft zunächst Pilotkunden, eingebunden werden und parallel dazu, und bereits zu einem frühen Zeitpunkt, die Politik.

6.7 Wettbewerbliches Umfeld für den Einsatz von CNG in schweren Nutzfahrzeugen im Fernverkehr

6.7.1 Oberleitungs-Lkw

Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Markteinführung einer CNG Infrastruktur für schwere Nutzfahrzeuge

Abbildung 48: Probefahrt eines von Siemens entwickelten Oberleitungs-Lkw in Deutschland, © Siemens AG [Siemens 2015]

Diese Lösung ist aus energetischer und umweltspezifischer Sicht durchaus interessant, dürfte aber aus Fahrzeug- und Infrastrukturkosten vor allen Dingen kurz- und mittelfristig schwerlich mit dem CNG-Betrieb konkurrieren können. Außerdem ist die Vermeidung von Emissionen dann auf die Autobahnen beschränkt und stellt keine Lösung für sensitive Gebiete wie z.B. innerstädtische Bereiche dar. Schließlich dürften diese Fahrzeuge zumindest teilweise auch im Wettbewerb zum Gütertransport mit der Bahn stehen, was auch aus volkswirtschaftlicher Perspektive hinterfragt werden dürfte.

6.7.2 Brennstoffzellen-Lkw

Die Integration elektrisch hocheffizienter Brennstoffzellenantriebe in Nutzfahrzeuge wurde durch unterschiedliche Entwickler und Hersteller früh aufgegriffen. Dabei wurden sowohl mittelschwere Lkw bis 7,5 t als auch schwere Nutzfahrzeuge mit dieser Technologie ausgerüstet. Während die mittelschweren Lkw insbesondere in Ballungszentren CO₂-, schadstoff- und lärmreduzierend eingesetzt werden könnten, wurde der Brennstoffzelleneinsatz in schweren Nutzfahrzeugen bisher als eher langfristig angesehen. Nichtsdestotrotz hat die Firma Vision Motors für den Hafen von Los Angeles den Prototyp eines brennstoffzellelektrischen Zugfahrzeuges für die Nahlogistik (typischerweise <80 km) zu intermodalen Verkehrsknoten durch teilweise emissionssensible Stadtgebiete erfolgreich präsentiert. Auch wenn die Firma Vision Industries inzwischen liquidiert wurde und damit das Konzept für eine Kommerzialisierung zunächst vermutlich nicht weiterverfolgt wird bzw. eine Serieneinführung nicht absehbar ist, lässt der Demonstrator erkennen, dass langfristig eine Elektrifizierung auch schwerer Nutzfahr-
zeuge mit Elektromobilität auf Basis von Brennstoffzellen als Antrieb und Wasserstoff als Kraftstoff prinzipiell machbar ist.

Abbildung 49: Brennstoffzellenangetriebener Schwerlast-Lkw [Tosca 2016]

Zur Zeit befindet sich in der Schweiz durch die Firma COOP die Entwicklung von Brennstoffzellen-Lkw der 19 t Klasse (36 t mit Anhänger) sowie der Aufbau einer zur Betankung erforderlichen punktuellen Tankstelleninfrastruktur für die Nahlogistik (200-300 km) durch die COOP Mineraloel AG in Vorbereitung [COOP 2015].

Derzeit dürfte jedoch die Speicherung großer Mengen Wasserstoff an Bord für einen Einsatz in schweren Fernlast-Lkw das eigentliche Problem für eine Serientauglichkeit darstellen. Ähnlich wie beim Einsatz von Erdgas dürfte dann auch die Diskussion der Wasserstoffspeicherung an Bord entweder unter Druck oder tiefkalt verflüssigt zu führen sein. Trotz des hohen Speicherdruckniveaus von 70 MPa sind aber prinzipiell die Herausforderungen durch den spezifisch noch höheren volumetrischen Speicherplatzbedarf für gasförmigen Wasserstoff noch höher als für Erdgas, der wegen der nutzfahrzeugspezifischen Fahrprofile auch nicht durch im Teillastbetrieb effiziente hybridisierte Brennstoffzellenantriebe voll kompensiert werden kann. In jedem Fall dürfte die
Einführung von Brennstoffzellen in schweren Nutzfahrzeugen auch durch die Serienfertigung für den Pkw-Einsatz begünstigt werden.

6.7.3 Methanol als Ottomotorkraftstoff

Der Einsatz von Methanol als Kraftstoff für schwere Nutzfahrzeuge muss sich zwei Herausforderungen stellen:

- Zum einen ist die Effizienz von aus Erdgas hergestelltem Methanol über die MeOH-Synthese stark verlustbehaftet, sodass die Energiebilanz im Vergleich zum direkten Einsatz von Erdgas (insbesondere CNG) deutlich schlechter ausfällt und die Verwendung von Methanol im Vergleich zu Wasserstoff als Kraftstoff z.B. aus erneuerbarem Strom ebenfalls energieverlustbehaftet und stark potenzialbeschränkt ist.

- Zum anderen beträgt die volumetrische Speicherdichte von Methanol gegenüber Diesel wie bei LNG ebenfalls nur 40%, sodass zwar der Umgang mit Methanol als flüssigem Kraftstoff einfacher ist, aber ebenfalls viel Speichervolumen im Fahrzeug in Anspruch nimmt.

Derzeit sind uns keine Strategien zum Einsatz von Methanol in diesem Fahrzeugsegment bekannt.

6.7.4 Diesel aus PtL

PtL-Kraftstoffe zeichnen sich insbesondere durch den Vorteil der Nutzung bestehender fossiler Kraftstoffverteilinfrastrukturen aus, haben dafür aber auch einige schwerwiegende Nachteile wie:

- Hohe Energieverluste in der Erzeugungsvorkette (Elektrolyse, Methanolgenerator mit erneuerbarem CO2-Bedarf) und damit verbunden hohe Investitions- und Betriebskosten und

- kein Beitrag zur Verringerung der lokal erzeugten Schadstoff- und Geräuschemissionen, die wie beim konventionellen Dieselmotor ebenfalls durch aufwändige Abgasnachreinigungstechnik mit SCR und Adblue beseitigt werden müssen.

6.7.5 Batterieangetriebener Lkw

40 t Fern-Lkw, die eine Reichweite von 400 Meilen bzw. mehr als 650 km versprechen, lesen sich jedoch mehr als ein politisches Positionspapier zu „Made in America“. Erste konkrete Fahrerfahrungen im realen Alltagseinsatz bleiben daher abzuwarten.

6.8 Offen gebliebene Fragen / Handlungsempfehlungen

In Kapitel 6.8 werden die in dieser Studie noch offen gebliebenen Punkte bzw. unbeantwortete Fragen zusammengestellt, um daraus noch verbleibenden Informationsbedarf abzuleiten. Diese sind in Tabelle 36 nach Priorität sortiert zusammengestellt.

Tabelle 36: Offene Punkte / unbeantwortete Fragen, Handlungsempfehlungen

<table>
<thead>
<tr>
<th>Prio</th>
<th>Offener Punkt / unbeantwortete Frage</th>
<th>Maßnahme(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoch</td>
<td>Genaue Performance- und Kilometerkosten für adaptierte Erdgasmotoren, vergrößerte Tankkapazität an Bord</td>
<td>TCO-Analyse mit Fahrzeugkostenanalyse in Kooperation mit Nutzfahrzeug- und Tanksystemherstellern</td>
</tr>
<tr>
<td>Hoch</td>
<td>Genaue Kostenanalyse für den schrittweisen Aufbau einer angemessenen CNG-Tankstellinfrastruktur</td>
<td>CNG-Kostenanalyse in Kooperation mit CNG-Tankstellenherstellern</td>
</tr>
<tr>
<td>Hoch</td>
<td>Keine Kommunikationsstrategie innerhalb der Erdgasindustrie</td>
<td>Gespräche und Einigungsprozess in Erdgasindustrie</td>
</tr>
<tr>
<td>Hoch</td>
<td>Versorgung relevanter CNG-Tankstellen aus dem HD-Erdgasnetz</td>
<td>GIS-basierte Standortanalysen (OGE intern)</td>
</tr>
<tr>
<td>Mittel</td>
<td>Betreibermodell ist noch nicht festgelegt</td>
<td>Gespräche mit etablierten CNG-Tankstellenbetreibern oder neuen Akteuren</td>
</tr>
<tr>
<td>Mittel</td>
<td>Zulässigkeit der Regelwerksinterpretation im Sinne einer erweiterten CNG-Speicherkapazität an Bord</td>
<td>Gespräche / Initiativen mit Zulassungs- und Genehmigungsbehörden</td>
</tr>
<tr>
<td>Mittel</td>
<td>Entwicklung hocheffizienter Erdgasmotoren dediziert für CNG</td>
<td>Aufbau eines dedizierten europäischen CNG-Fern-Lkw durch Nutzfahrzeug- und Tanksystemhersteller</td>
</tr>
<tr>
<td>Mittel</td>
<td>Erweiterung der heute regulierungsconformen CNG-Tankkapazität</td>
<td>Entwicklung eines Pilotfahrzeuges</td>
</tr>
<tr>
<td>Niedrig</td>
<td>Zulassungsfähigkeit von 35 MPa CNG-Betriebsdruck</td>
<td>Gespräche / Initiativen mit Zulassungs- und Genehmigungsbehörden</td>
</tr>
<tr>
<td>Niedrig</td>
<td>Erprobung eines 35 MPa CNG-Fahrzeuges unter Alltagsbedingungen</td>
<td>Aufbau eines CNG-Prototypen mit 35 MPa durch Nutzfahrzeug- und Tanksystemhersteller</td>
</tr>
<tr>
<td>Niedrig</td>
<td>THG-Emissionsreduktion durch Zumischung / Anrechnung von Biogas im HD-Erdgasnetz</td>
<td>Analysen bzw. Pilotprojekt zur Erprobung durchführen</td>
</tr>
</tbody>
</table>

6.9 Einführungsstrategie für CNG zum Einsatz in schweren Nutzfahrzeugen im Fernverkehr

Die in dieser Studie gesammelten Erkenntnisse zu Entwicklungsstand und -perspektiven der CNG-Technologie für den Betrieb schwerer Nutzfahrzeuge im Fernverkehr und insbesondere deren Defizite werden in diesem Kapitel in einen Strategiefahrplan übersetzt
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr
Markteinführung einer CNG Infrastruktur für schwere Nutzfahrzeuge

(siehe Abbildung 50). Dieser besteht aus einer priorisierten Abfolge von Entwicklungs-
schritten, die konsekutiv bzw. parallel aus der Perspektive von OGE unternommen werden
sollten, um zunächst die kommerzielle Umsetzbarkeit sorgsam und in höherem
Detailierungsgrad abzusichern. Im Falle einer weiter positiven Perspektive sollte OGE
dann verbündete Akteure gewinnen, um erste konkrete Entwicklungsschritte gemeinsam
und kostendämpfend zu unternehmen.

Abbildung 50: Wichtige Schritte auf dem Weg zu einer erfolgreichen Marktein-
führung von CNG für den Einsatz in Nutzfahrzeugen für den
Fernverkehr

Als wichtigster und einziger Vorbereitungsschritt gilt die genaue TCO-Analyse auf Basis
der mit dieser Studie vorgelegten Wirtschaftlichkeitsdaten im Konsortium mit einem oder
mehreren Vertretern aus der Nutzfahrzeugbranche, der CNG-Verbundmaterialtankher-
steller (Typ IV-Tanks) und der CNG-Tankstellenhersteller mit ersten Erfahrungen in der
Entwicklung von CNG-Tankstellen mit großem Durchfluss und redundanter Auslegung.

Zeitgleich sollte an einem Konsens innerhalb der Erdgasindustrie im Sinne einer abge-
stimmten CNG-/LNG-Strategie gearbeitet werden, die dann auch in einer politischen
Etablierung der CNG-Infrastruktur für schwere Nutzfahrzeuge in Deutschland mündet und
dann auch im nationalen Strategierahmen an die Europäische Kommission berichtet wird.
Dabei helfen auch europäische Partnerschaften wie z.B. die mit niederländischen
Unternehmen. Wichtigste Ergebnisse dieses Schrittes sind dabei die Formulierung auch
mengenmäßiger Ziele sowie die Formulierung einer Kommunikationsstrategie.

Alle weiteren Schritte dienen dann bereits der Vorbereitung konkreter Projekte, begleitet
durch entsprechende Informationskampagnen und Gewinnung von Pilotkunden für erste
reale Felderprobungen, am besten in Anwendungsfällen mit räumlicher Begrenzung. Durch rote Rauten wurden in Abbildung 50 Abbruchkriterien vorgeschlagen, um bei ausbleibendem Erfolg die Weiterführung der Strategieformulierung zu überdenken.

6.10 Antworten auf strategische Fragen seitens OGE

Zum Abschluss und zur Interpretation der wichtigsten Einsichten dieser Arbeit hat uns OGE vier strategische Fragen gestellt, die hier beantwortet werden:

1) Warum soll OGE sich überhaupt für CNG in schweren Nutzfahrzeugen engagieren?
2) Ist CNG besser als Diesel? Aktueller Stand und Ausblick.
3) Ist CNG besser als LNG?
4) Was braucht es (jetzt), um CNG in den Markt zu bekommen?

Unsere Antworten auf diese Fragen lauten wie folgt:

1) Warum soll OGE sich überhaupt für CNG in schweren Nutzfahrzeugen engagieren?
Wichtigste Motivation für OGE sollte sein:
– Rückgang im Erdgasabsatz erfordert Erschließung neuer, langfristig tragender Erdgasmärkte.
– Mobilität gilt als wichtiger Wachstumsmarkt für Erdgas, insbesondere der Einsatz in schweren Nutzfahrzeugen (Begründung: weniger Wettbewerb durch Alternativtechnologien / -kraftstoffe und hohes Absatzpotenzial).

2) Ist CNG besser als Diesel?
JA
– Deutlicher Kraftstoffkostenvorteil mit und ohne Steuervergünstigung
– Mit optimierter Motorentechnik mittelfristig sichtbar bessere Klimabilanz
– Nach Euro VI geregelte Schadstoffemissionen in Erdgasmotoren leichter und kostengünstiger nachzureinigen

ABER
– Für Erdgas optimierte Motorentechnik erforderlich (Energieeinsatz, THG-Emissionen)
– Bei gleichem Speichervolumen werden hohe Reichweiten von Diesel-Lkw nicht erreicht (mit zusätzlichem Speichervolumen mit CNG auch Reichweiten bis 1.300 km möglich)
3) **Ist CNG besser als LNG?**

JA
- Tendentieller Kraftstoffkostenvorteil
- Entgegen bisheriger Meinung Gewicht von CNG-Tanksystemen nicht höher
- Im Deutschland-Mix sind THG-Emissionen deutlich geringer
- Erdgas-Verteilinfrastruktur verfügbar

ABER
- Tanksystemvolumen etwa doppelt so groß
- CNG-Tankstellen (für Lkw) sind wie LNG-Tankstellen noch zu errichten

4) **Was braucht es (jetzt), um CNG in den Markt zu bekommen?**

- TCO-Analysen gemeinsam mit Fahrzeug-, Tanksystem- und Tankstellenherstellern, um verlässliche Kostendaten verfügbar zu machen
- Verbesserte und an Erdgas adaptierte Motorentechnik (optimierte Ottomotoren, HPDI)
- Entwicklung von CNG-Tanksystemen zur optimalen Nutzung des verfügbaren Einbauraums und/oder Regelwerksanpassung für weiteren Einbauraum hinter Fahrerhaus
- Einigung in Gaswirtschaft (DVGW, LNG-Taskforce) zur Positionierung von CNG mit LNG
- Gewinnung verbundeter Akteure (Fahrzeug-, Tanksystem- und Tankstellenhersteller sowie Spediteure)
- Parallele Entwicklung der Nahlogistik unter Berücksichtigung der Tankstellennutzung auch durch Fernverkehr; aber Wettbewerb zu Batterie- und Brennstoffzellenantrieben
- Initiierung von Pilotprojekten mit angepasster Tankstellenauslegung, z.B. durch Einbindung der Spediteure

8 Tankstellenanschlusskosten können Kostenvorteil kompensieren
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr

Literatur

7 LITERATUR

[BMWi 2015] Bundesministerium für Wirtschaft und Energie (BMWi): Zahlen und Fakten: Energiedaten. 12. OKT 2015, abgerufen unter:
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr

Literatur

Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr

Literatur

Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr

Literatur

Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr

Literatur

Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr

Literatur

dokumentation.pdf?__blob=publicationFile am 31. MAI 2016

Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr

Literatur

[ifeu & TU Graz 2015] Institut für Energie- und Umweltforschung GmbH (ifeu) und Technische Universität Graz im Auftrag des Umweltbundesamtes (UBA): Zukünftige Maßnahmen zur Kraftstoffeinsparung bei schweren Nutzfahrzeugen. 2015, unveröffentlicht

Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr

Literatur

[MAN 2015] MAN: Richtlinie 96/53/EG idF (EU) 2015/719. 03. DEZ 2015, unveröffentlicht

[NGV Today 2013] NGV Today: Navigant, Sanford Bernstein point to growing global NGV market, 40% of new global NGV fueling in North America. 19. AUG 2013, abgerufen unter:
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr

Literatur

[NGV Today 2015] NGV Today: CNG and LNG Fueling Station Counts. 02. APR 2015, abgerufen unter:

[NGVA europe 2013] NGVA europe: NGVs and refuelling stations Worldwide. 23. SEP 2013, abgerufen unter:

[NGVA europe 2014] NGVA europe: NGVs and refuelling stations in Europe. 07. OKT 2014, abgerufen unter:

[NOAA 2016] National Oceanic & Atmospheric Administration: North Dakota’s Bakken oil and gas field leaking 275,000 tons of methane per year. News & Events 2016, 11. MAI 2016, abgerufen unter:

Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr

Literatur

Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr

Literatur

Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr

Literatur

6 hpdi-technology-program-with-daimler-ag am 01. DEZ 2015

[Wuppertal 2005] Lechtenböhmer, St. et al. (Wuppertal Institut für Klima, Umwelt und Energie GmbH): Treibhausgasemissionen des russischen Erdgas-Exportpipeline-Systems – Ergebnisse und Hochrechnungen empirischer Untersuchungen in Russland. Projekt im Auftrag der E.ON Ruhrgas AG, durchgeführt durch das Wuppertal Institut für Klima, Umwelt, Energie GmbH in Zusammenarbeit mit dem Max-Planck-Institut für Chemie, Mainz, 2005

7-153
Vergleich von CNG und LNG zum Einsatz in Lkw im Fernverkehr

Literatur

Über drei Jahrzehnte kontinuierlicher Erfahrung des interdisziplinären Teams renommierter Experten bilden die Basis der umfassenden Kompetenz der LBST.

Die LBST bietet ihren Kunden:

SYSTEM- UND TECHNOLOGIESTUDIEN
- Technologiebewertung und Due Diligence;
- Energie- und Infrastrukturkonzepte;
- Machbarkeitsstudien;

STRATEGIEBERATUNG
- Produktportfolioanalysen, Identifizierung neuer Produkte und Dienstleistungen;
- Marktanalysen; politische Analysen;

NACHHALTIGKEITSBERATUNG
- Lebenszyklus-Analysen; Carbon Footprint Analysen;
- Bewertung natürlicher Ressourcen (Energie, Mineralien, Wasser); Nachhaltigkeitsbewertung;

KOORDINATION
- Projektmanagement, -begleitung und -bewertung;

ENTSCHEIDUNGSVORBEREITUNG
- Studien, Briefings, Expertenkreise, Trainings.

Besondere Arbeitsschwerpunkte liegen in den Bereichen Energie (erneuerbare Energie, Energiespeicherung, Wasserstoff und Brennstoffzellen) und Verkehr (Kraftstoffe und Antriebe, Infrastruktur, Mobilitätskonzepte), sowie bei umfassenden Nachhaltigkeitsanalysen.

Mit ihrem tiefen Verständnis gesellschaftlicher und technologischer Entwicklungen sowie ihrer Unabhängigkeit hilft die LBST ihren Kunden mit objektiven und fundierten Informationen bei nachhaltigen Entscheidungen zur Sicherung ihrer Zukunft.